Azkaban3.45

一 简介

1 官网

https://azkaban.github.io/

Azkaban was implemented at LinkedIn to solve the problem of Hadoop job dependencies. We had jobs that needed to run in order, from ETL jobs to data analytics products.

Initially a single server solution, with the increased number of Hadoop users over the years, Azkaban has evolved to be a more robust solution.

Azkaban是由LinkedIn为了解决Hadoop环境下任务依赖问题而开发的,LinkedIn团队有很多任务需要按照顺序运行,包括ETL任务以及数据分析任务;

Azkaban一开始是单server方案,现在已经演化为一个更健壮的方案;(可惜当前版本的WebServer还是单点)

Azkaban consists of 3 key components:

  • Relational Database (MySQL)
  • AzkabanWebServer
  • AzkabanExecutorServer

Azkaban有3个核心组件:Mysql、WebServer、ExecutorServer;

2 部署

3 数据库表结构

projects:项目

project_flows:工作流定义

execution_flows:工作流实例

execution_jobs:任务实例

triggers:调度定义

ps:表中很多数据都是编码的,enc_type是编码类型(对应的枚举为EncodingType),2是gzip编码,其他为无编码,2需要调用GZIPUtils.transformBytesToObject解析得到原始字符串;

4 概念

l  Job:最小的执行单元,作为DAG的一个结点,即任务

l  Flow:由多个Job组成,并通过dependent配置Job的依赖属性,即工作流

l  Tirgger:根据指定Cron信息触发Flow,即调度

二 代码解析

1 启动过程

Web Server

AzkabanWebServer.main

         launch

                  prepareAndStartServer

                          configureRoutes

                                   TriggerManager.start

                          FlowTriggerService.start

                                   recoverIncompleteTriggerInstances

                                            SELECT %s FROM execution_dependencies WHERE trigger_instance_id in (SELECT trigger_instance_id FROM execution_dependencies WHERE dep_status = %s or dep_status = %s or (dep_status = %s and flow_exec_id = %s))

                          FlowTriggerScheduler.start

ExecutorManager

         setupExecutors

         loadRunningFlows

QueueProcessorThread.run

ExecutingManagerUpdaterThread.run

Executor Server

AzkabanExecutorServer.main

         launch

                  AzkabanExecutorServer.start

                          insertExecutorEntryIntoDB

2 工作流执行过程

Web Server两个入口:

ExecuteFlowAction.doAction

ExecutorServlet.ajaxExecuteFlow

Web Server分配任务:

ExecutorManager.submitExecutableFlow

         JdbcExecutorLoader.uploadExecutableFlow

                  INSERT INTO execution_flows (project_id, flow_id, version, status, submit_time, submit_user, update_time) values (?,?,?,?,?,?,?)

         ExecutorLoader.addActiveExecutableReference

                  INSERT INTO active_executing_flows (exec_id, update_time) values (?,?)

         queuedFlows.enqueue

QueueProcessorThread.run

         processQueuedFlows

                  ExecutorManager.selectExecutorAndDispatchFlow (get from queuedFlows)

                          selectExecutor

                          dispatch

                                   JdbcExecutorLoader.assignExecutor

                                            UPDATE execution_flows SET executor_id=? where exec_id=?

                                   ExecutorApiGateway.callWithExecutable (调用Executor Server)

Executor Server执行任务:

ExecutorServlet.doGet

         handleAjaxExecute

                  FlowRunnerManager.submitFlow

                          JdbcExecutorLoader.fetchExecutableFlow

                                 SELECT exec_id, enc_type, flow_data FROM execution_flows WHERE exec_id=?

                          FlowPreparer.setup

                          FlowRunner.run

                                   setupFlowExecution

                                   updateFlow

                                            UPDATE execution_flows SET status=?,update_time=?,start_time=?,end_time=?,enc_type=?,flow_data=? WHERE exec_id=?

                                   runFlow

                                            progressGraph

                                                     runReadyJob

                                                             runExecutableNode

                                                                      JobRunner.run

                                                                               uploadExecutableNode

                                                                                        INSERT INTO execution_jobs (exec_id, project_id, version, flow_id, job_id, start_time, end_time, status, input_params, attempt) VALUES (?,?,?,?,?,?,?,?,?,?)

                                                                               prepareJob

                                                                               runJob

                                                                                        Job.run (ProcessJob, JavaJob)

Web Server轮询流程状态:

ExecutingManagerUpdaterThread.run

         getFlowToExecutorMap

         ExecutorApiGateway.callWithExecutionId

         updateExecution

3 调度执行过程

TriggerManager.start

         loadTriggers

                  SELECT trigger_id, trigger_source, modify_time, enc_type, data FROM triggers

         TriggerScannerThread.start

                  checkAllTriggers

                          onTriggerTrigger

                                   TriggerAction.doAction

                                            ExecuteFlowAction.doAction

PS:还有另一套完全独立的定时任务逻辑,通过azkaban.server.schedule.enable_quartz控制(默认false),以下为register job到quartz:

ProjectManagerServlet.ajaxHandleUpload

         SELECT id, name, active, modified_time, create_time, version, last_modified_by, description, enc_type, settings_blob FROM projects WHERE name=? AND active=true

         ProjectManager.loadAllProjectFlows

                  SELECT project_id, version, flow_id, modified_time, encoding_type, json FROM project_flows WHERE project_id=? AND version=?

         FlowTriggerScheduler.scheduleAll

                  SELECT MAX(flow_version) FROM project_flow_files WHERE project_id=? AND project_version=? AND flow_name=?

                  SELECT flow_file FROM project_flow_files WHERE project_id=? AND project_version=? AND flow_name=? AND flow_version=?

                  registerJob

以下为quartz job执行:

FlowTriggerQuartzJob.execute

         FlowTriggerService.startTrigger

                  TriggerInstanceProcessor.processSucceed

                          TriggerInstanceProcessor.executeFlowAndUpdateExecID

                                   ExecutorManager.submitExecutableFlow

4 任务执行过程

Job是任务的核心接口,所有具体任务都是该接口的子类:

Job

         AbstractJob

                  AbstractProcessJob

                          ProcessJob (Shell任务)

                                   JavaProcessJob (Java任务)

                                            JavaJob

【原创】大数据基础之Azkaban(1)简介、源代码解析的更多相关文章

  1. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  2. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

  3. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  4. 【原创】大数据基础之词频统计Word Count

    对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...

  5. 大数据基础知识:分布式计算、服务器集群[zz]

    大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...

  6. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  7. 大数据基础知识问答----hadoop篇

    handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...

  8. hadoop大数据基础框架技术详解

    一.什么是大数据 进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB ...

  9. 大数据基础总结---HDFS分布式文件系统

    HDFS分布式文件系统 文件系统的基本概述 文件系统定义:文件系统是一种存储和组织计算机数据的方法,它使得对其访问和查找变得容易. 文件名:在文件系统中,文件名是用于定位存储位置. 元数据(Metad ...

随机推荐

  1. Jquery mobile动态生成ListView调用刷新方法报错

    错误:cannot call methods on listview prior to initialization... 示例: <div data-role="page" ...

  2. 基于Flask 实现Web微信登陆

    网页版微信登陆网址 https://login.wx.qq.com/ 获取微信登陆的二维码 在浏览器中访问登陆接口 https://login.wx.qq.com/ 我们查找二维码的图片可以看到 其中 ...

  3. win10设置操作备忘

    添加密码, 更改密码: Win键-->左侧用户图标-->更改帐户设置-->登陆选项-->添加密码 | 更改密码

  4. centos7之NFS使用

    NFS是Network File System的缩写,即网络文件系统.客户端通过挂载的方式将NFS服务器端共享的数据目录挂载到本地目录下. 一.nfs为什么需要RPC? 因为NFS支持的功能很多,不同 ...

  5. Python——socketserver编程(客户端/服务器)

    一.socketserver是标准库中的高级模块,它的目标是简化很多多样板代码,是创建网络客户端和服务器所必须的代码.(事件驱动) 二.模块类 BaseServer :包含核心服务器功能和mix-in ...

  6. Tesseract-ocr 安装与使用

    Tesseract(识别引擎),一款由HP实验室开发由Google维护的开源OCR(Optical Character Recognition , 光学字符识别)引擎,与Microsoft Offic ...

  7. 如何学习FPGA

    如何学习FPGA 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/k331922164/article/details/44626989 PS:笔者强 ...

  8. LoadRunner【第三篇】录制脚本实践:订票网站

    启动服务 安装好loadrunner,我们就可以实践了. loadrunner自带订票网站,可以方便我们练习, 先把下面两个发送到桌面快捷方式 首先,启动服务,点击下面图标(如果服务无法启动,检查端口 ...

  9. win+R启动列表

    屌丝才用windows,无奈~ """ Win+R 快速启动的命令: 系统应用程序: calc - 启动计算器 charmap - 启动字符映射表 chkdsk - Ch ...

  10. CentOS 7.x下安装部署MySQL 8.0实施手册

    MySQL 8 正式版 8.0.11 已发布,官方表示 MySQL 8 要比 MySQL 5.7 快 2 倍,还带来了大量的改进和更快的性能! 一.  Mysql8.0版本相比之前版本的一些特性 1) ...