【原创】大数据基础之Azkaban(1)简介、源代码解析
Azkaban3.45
一 简介
1 官网
Azkaban was implemented at LinkedIn to solve the problem of Hadoop job dependencies. We had jobs that needed to run in order, from ETL jobs to data analytics products.
Initially a single server solution, with the increased number of Hadoop users over the years, Azkaban has evolved to be a more robust solution.
Azkaban是由LinkedIn为了解决Hadoop环境下任务依赖问题而开发的,LinkedIn团队有很多任务需要按照顺序运行,包括ETL任务以及数据分析任务;
Azkaban一开始是单server方案,现在已经演化为一个更健壮的方案;(可惜当前版本的WebServer还是单点)
Azkaban consists of 3 key components:
- Relational Database (MySQL)
- AzkabanWebServer
- AzkabanExecutorServer
Azkaban有3个核心组件:Mysql、WebServer、ExecutorServer;

2 部署

3 数据库表结构

projects:项目
project_flows:工作流定义
execution_flows:工作流实例
execution_jobs:任务实例
triggers:调度定义
ps:表中很多数据都是编码的,enc_type是编码类型(对应的枚举为EncodingType),2是gzip编码,其他为无编码,2需要调用GZIPUtils.transformBytesToObject解析得到原始字符串;
4 概念
l Job:最小的执行单元,作为DAG的一个结点,即任务
l Flow:由多个Job组成,并通过dependent配置Job的依赖属性,即工作流
l Tirgger:根据指定Cron信息触发Flow,即调度
二 代码解析
1 启动过程
Web Server
AzkabanWebServer.main
launch
prepareAndStartServer
configureRoutes
TriggerManager.start
FlowTriggerService.start
recoverIncompleteTriggerInstances
SELECT %s FROM execution_dependencies WHERE trigger_instance_id in (SELECT trigger_instance_id FROM execution_dependencies WHERE dep_status = %s or dep_status = %s or (dep_status = %s and flow_exec_id = %s))
FlowTriggerScheduler.start
ExecutorManager
setupExecutors
loadRunningFlows
QueueProcessorThread.run
ExecutingManagerUpdaterThread.run
Executor Server
AzkabanExecutorServer.main
launch
AzkabanExecutorServer.start
insertExecutorEntryIntoDB
2 工作流执行过程
Web Server两个入口:
ExecuteFlowAction.doAction
ExecutorServlet.ajaxExecuteFlow
Web Server分配任务:
ExecutorManager.submitExecutableFlow
JdbcExecutorLoader.uploadExecutableFlow
INSERT INTO execution_flows (project_id, flow_id, version, status, submit_time, submit_user, update_time) values (?,?,?,?,?,?,?)
ExecutorLoader.addActiveExecutableReference
INSERT INTO active_executing_flows (exec_id, update_time) values (?,?)
queuedFlows.enqueue
QueueProcessorThread.run
processQueuedFlows
ExecutorManager.selectExecutorAndDispatchFlow (get from queuedFlows)
selectExecutor
dispatch
JdbcExecutorLoader.assignExecutor
UPDATE execution_flows SET executor_id=? where exec_id=?
ExecutorApiGateway.callWithExecutable (调用Executor Server)
Executor Server执行任务:
ExecutorServlet.doGet
handleAjaxExecute
FlowRunnerManager.submitFlow
JdbcExecutorLoader.fetchExecutableFlow
SELECT exec_id, enc_type, flow_data FROM execution_flows WHERE exec_id=?
FlowPreparer.setup
FlowRunner.run
setupFlowExecution
updateFlow
UPDATE execution_flows SET status=?,update_time=?,start_time=?,end_time=?,enc_type=?,flow_data=? WHERE exec_id=?
runFlow
progressGraph
runReadyJob
runExecutableNode
JobRunner.run
uploadExecutableNode
INSERT INTO execution_jobs (exec_id, project_id, version, flow_id, job_id, start_time, end_time, status, input_params, attempt) VALUES (?,?,?,?,?,?,?,?,?,?)
prepareJob
runJob
Job.run (ProcessJob, JavaJob)
Web Server轮询流程状态:
ExecutingManagerUpdaterThread.run
getFlowToExecutorMap
ExecutorApiGateway.callWithExecutionId
updateExecution
3 调度执行过程
TriggerManager.start
loadTriggers
SELECT trigger_id, trigger_source, modify_time, enc_type, data FROM triggers
TriggerScannerThread.start
checkAllTriggers
onTriggerTrigger
TriggerAction.doAction
ExecuteFlowAction.doAction
PS:还有另一套完全独立的定时任务逻辑,通过azkaban.server.schedule.enable_quartz控制(默认false),以下为register job到quartz:
ProjectManagerServlet.ajaxHandleUpload
SELECT id, name, active, modified_time, create_time, version, last_modified_by, description, enc_type, settings_blob FROM projects WHERE name=? AND active=true
ProjectManager.loadAllProjectFlows
SELECT project_id, version, flow_id, modified_time, encoding_type, json FROM project_flows WHERE project_id=? AND version=?
FlowTriggerScheduler.scheduleAll
SELECT MAX(flow_version) FROM project_flow_files WHERE project_id=? AND project_version=? AND flow_name=?
SELECT flow_file FROM project_flow_files WHERE project_id=? AND project_version=? AND flow_name=? AND flow_version=?
registerJob
以下为quartz job执行:
FlowTriggerQuartzJob.execute
FlowTriggerService.startTrigger
TriggerInstanceProcessor.processSucceed
TriggerInstanceProcessor.executeFlowAndUpdateExecID
ExecutorManager.submitExecutableFlow
4 任务执行过程
Job是任务的核心接口,所有具体任务都是该接口的子类:
Job
AbstractJob
AbstractProcessJob
ProcessJob (Shell任务)
JavaProcessJob (Java任务)
JavaJob
【原创】大数据基础之Azkaban(1)简介、源代码解析的更多相关文章
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Impala(1)简介、安装、使用
impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...
- 【原创】大数据基础之Benchmark(2)TPC-DS
tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...
- 【原创】大数据基础之词频统计Word Count
对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...
- 大数据基础知识:分布式计算、服务器集群[zz]
大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- 大数据基础知识问答----hadoop篇
handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...
- hadoop大数据基础框架技术详解
一.什么是大数据 进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB ...
- 大数据基础总结---HDFS分布式文件系统
HDFS分布式文件系统 文件系统的基本概述 文件系统定义:文件系统是一种存储和组织计算机数据的方法,它使得对其访问和查找变得容易. 文件名:在文件系统中,文件名是用于定位存储位置. 元数据(Metad ...
随机推荐
- 基于vue-simple-uploader封装文件分片上传、秒传及断点续传的全局上传插件
目录 1. 前言 2. 关于vue-simple-uploader 3. 基于vue-simple-uploader封装全局上传组件 4. 文件上传流程概览 5. 文件分片 6. MD5的计算过程 7 ...
- 基于 WebGL 的 HTML5 楼宇自控 3D 可视化监控
前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态 ...
- jquery动态设置图片路径和超链接href属性
js document.getElementById("myImage").src="hackanm.gif"; jquery $("#img&quo ...
- 安装VM-tools
win10系统 VMware12 Ubuntu64位安装VM-tools时所遇到的提示信息: open-vm-tools are available from the OS vendor and VM ...
- (hdu) 4857 逃生 (拓扑排序+优先队列)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 Problem Description 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄 ...
- 【zabbix教程系列】二、zabbix特点
一.度量收集 从任何设备,系统,应用上收集指标,收集指标的方法有: 多平台zabbix代理 SNMP and IPMI 代理 无代理监控用户服务 自定义方法 计算和聚合 用户端web监控 二.问题发 ...
- vue生命週期
https://www.cnblogs.com/fly_dragon/p/6220273.html https://www.cnblogs.com/fly_dragon/p/6220273.html
- SUCTF 2016 : dMd
这个题可以说是比较坑了(还不是我很弱...) Linux跑一下: 要输密码 ida打开看看: int __cdecl main(int argc, const char **argv, const c ...
- Qt如何去掉按钮等控件的虚线框(焦点框)
方法1:可以通过代码ui->pushButton->setFocusPolicy(Qt::NoFocus)或在Qt Creator的属性列表中设置. 方法2:如果在嵌入式设备中需要通过按键 ...
- linux下find命令的使用和总结
背景:find命令十分的好用,特别是在查找文件的时候,这个时候需要和文件通配符一起使用. 1 前言 我们为什么要学会使用find命令? 每一种操作系统都有成千上万的文件组成,对于linux这样“一切皆 ...