[网鼎杯2020]you_raise_me_up

题目
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from Crypto.Util.number import *
import random n = 2 ** 512
m = random.randint(2, n-1) | 1 #返回2到n-1之间的任意整数
c = pow(m, bytes_to_long(flag), n)
print 'm = ' + str(m)
print 'c = ' + str(c) # m = 391190709124527428959489662565274039318305952172936859403855079581402770986890308469084735451207885386318986881041563704825943945069343345307381099559075
# c = 6665851394203214245856789450723658632520816791621796775909766895233000234023642878786025644953797995373211308485605397024123180085924117610802485972584499
分析

首先我们可以得到:$$c=m^{flag}mod,n$$

想要求出flag就要清楚:这是一道求离散对数的问题。

首先我们需要知道什么是离散对数:

\[a^x≡b(mod\,m)
\]

已知a,b,m,求解x

可见这是一道非常标准的离散对数问题求解。

已知:$$c=m^{flag}mod,n$$ 和c,m,n的值。

求离散对数:

\[flag=log_{m\,mod\,n}(c\,mod\,n)
\]

因为c是余数,所以:$$flag=log_{m,mod,n}c$$

解法一:sage

sage已经不陌生了,毕竟上次做一道羊城杯的题目用到了。

sage中的discrete_log()可以帮我们计算集散对数:

discrete_log()使用示例

由此编写脚本:

m=391190709124527428959489662565274039318305952172936859403855079581402770986890308469084735451207885386318986881041563704825943945069343345307381099559075
n=2**512
c=6665851394203214245856789450723658632520816791621796775909766895233000234023642878786025644953797995373211308485605397024123180085924117610802485972584499
flag= discrete_log((mod(c,n)), (mod(m,n)))
print(flag)

得到flag值之后再进行一个转:

from Crypto.Util.number import *

flag=56006392793405651552924479293096841126763872290794186417054288110043102953612574215902230811593957757
print(long_to_bytes(flag)) #b'flag{5f95ca93-1594-762d-ed0b-a9139692cb4a}'
补充

sage中求解离散对数有四个比较常用的函数:

(1)discrete_log:通用的求离散对数的方法:discrete_log(a,base,ord,operation)

(2)discrete_log_rho:求离散对数的Pollard-Rho算法:discrete_log_rho(a,base,ord,operation)

(3)discrete_log_lambda:求离散对数的Pollard-kangaroo算法(也称为lambda算法):discrete_log_lambda(a,base,bounds,operation)

(4)bsgs:小步大步法:bsgs(base,a,bounds,operation)

sage使用技巧:https://blog.csdn.net/qq_39642801/article/details/104158699?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-4

在线运行sage脚本:https://sagecell.sagemath.org/

解法二:python

求解离散对数问题可以用到python的sympy库中的discrete_log()函数。

discrete_log()使用示例
from sympy.ntheory import discrete_log
discrete_log(41, 15, 7)

写脚本:

from Crypto.Util.number import *
from sympy.ntheory import discrete_log
n = 2**512
m = 391190709124527428959489662565274039318305952172936859403855079581402770986890308469084735451207885386318986881041563704825943945069343345307381099559075
c = 6665851394203214245856789450723658632520816791621796775909766895233000234023642878786025644953797995373211308485605397024123180085924117610802485972584499
flag= discrete_log(n,c,m)
print(long_to_bytes(flag)) #b'flag{5f95ca93-1594-762d-ed0b-a9139692cb4a}'
总结

考查离散对数的概念以及求解离散对数。

https://www.bilibili.com/video/BV1ma4y1i7C7/?spm_id_from=333.788.recommend_more_video.2&vd_source=51c65e82dd2de4e2578bb3b9a956f0be

[网鼎杯2020]you_raise_me_up的更多相关文章

  1. 网鼎杯2020 AreUSerialz

    0x00 前言 ...有一说一,赵总的BUUCTF上的这道题目并没有复现到精髓.其实感觉出题人的题目本身没有那么简单的,只不过非预期实在是太简单惹. 涉及知识点: 1.php中protected变量反 ...

  2. 网鼎杯2020青龙组writeup-web

    本文首发于Leon的Blog,如需转载请注明原创地址并联系作者 AreUSerialz 开题即送源码: <?php include("flag.php"); highligh ...

  3. [网鼎杯 2020 青龙组]AreUSerialz

    题目分析 <?php include("flag.php"); highlight_file(FILE); class FileHandler { protected $op ...

  4. 刷题[网鼎杯 2020 朱雀组]phpweb

    解题思路 打开是一个蛮有意思的背景,众生皆懒狗,是自己没错了.源代码看一看,啥都没有.抓个包 诶,一看到func和p两个参数,想到了call_user_func(). 尝试着把date改成system ...

  5. 【网鼎杯2020朱雀组】Web WriteUp

    nmap nmap语法,很简单. 127.0.0.1' -iL /flag -oN vege.txt ' phpweb 打开,抓包,发现可以传递函数和其参数 试了一下很多函数都被过滤了,不能执行系统命 ...

  6. BUUCTF | [网鼎杯 2020 朱雀组]phpweb

    一道比较简单的题,不过对PHP还是不够熟悉 知识点 1.PHP date函数 PHP date() 函数用于对日期或时间进行格式化. 语法 date(format,timestamp) 参数 描述 f ...

  7. 【网鼎杯2020白虎组】Web WriteUp [picdown]

    picdown 抓包发现存在文件包含漏洞: 在main.py下面暴露的flask的源代码 from flask import Flask, Response, render_template, req ...

  8. 【网鼎杯2020青龙组】Web WriteUp

    AreUSerialz 打开题目直接给出了源代码 <?php include("flag.php"); highlight_file(__FILE__); class Fil ...

  9. [网鼎杯 2020 朱雀组]phpweb-1|反序列化

    1.打开界面之后界面一直在刷新,检查源代码也未发现提示信息,但是在检查中发现了两个隐藏的属性:func和p,抓包进行查看一下,结果如下: 2.对两个参数与返回值进行分析,我们使用dat时一般是这种格式 ...

  10. 2020年第二届“网鼎杯”网络安全大赛 白虎组 部分题目Writeup

    2020年第二届“网鼎杯”网络安全大赛 白虎组 部分题目Writeup 2020年网鼎杯白虎组赛题.zip下载 https://download.csdn.net/download/jameswhit ...

随机推荐

  1. 几种数据库jar包获取方式

    摘要:以下提供的都是各个数据库较为官方的jar包获取方式. 本文分享自华为云社区<JDBC连接相关jar包获取及上传管理中心白名单处理>,作者:HuaWei XYe. jar包获取 以下提 ...

  2. django.core.exceptions.ImproperlyConfigured: Application labels aren't unique, duplicates: rest_framework_swagger

    在启动服务时报django.core.exceptions.ImproperlyConfigured: Application labels aren't unique, duplicates: re ...

  3. C++进阶(unordered_set+unordered_map模拟实现)

    unordered_set unordered_set是以无特定顺序存储唯一元素的容器,并且允许根据它们的值快速检索单个元素,是一种K模型. 在unordered_set中,元素的值同时是它的key, ...

  4. 关系数据库——MySQL

    数据库 1.基本操作 1.1命令行操作 mysql -u username -p+password; --连接数据库 flush privileges; --刷新权限 show databases; ...

  5. 广工Anyview【DC02PE97】解析

    前言 由于是出成绩后一段时间写的,已经有点遗忘当时遇到的情况,同时该代码不是最优解,需要精简代码的同学可以想想办法解决奇偶长度和有时候头结点不为空的问题,这样就可以极大程度上解决我这个代码的冗余. 题 ...

  6. 微机原理与系统设计笔记2 | 8086CPU结构与功能

    打算整理汇编语言与接口微机这方面的学习记录.本部分讲解8086CPU的结构和基本功能以及特性. 参考资料 西电<微机原理与系统设计>周佳社 西交<微机原理与接口技术> 课本&l ...

  7. windows使用管理员权限安装软件

    安装步骤 系统搜索 cmd 点击右键,使用管理者方式运行 输入用户名密码 成功以管理员身份运行 cd 到软件存储的目录 输入软件执行文件名, 按回车键,成功开始安装

  8. OSI七层协议补充与socket套节字

    OSI七层协议补充与socket套节字 一.传输层之TCP与UDP协议 TCP与UDP协议都是用来规定通信方式的,数据传输过程中能够遵循的协议有很多其中TCP协议和UDP协议是较为常见的两个. 1.T ...

  9. OpenMP 线程同步 Construct 实现原理以及源码分析(下)

    OpenMP 线程同步 Construct 实现原理以及源码分析(下) 前言 在上面文章当中我们主要分析了 flush, critical, master 这三个 construct 的实现原理.在本 ...

  10. 【单片机】nRF52832 实现停止蓝牙广播接口

    前言 有一个项目使用了 nRF52832 芯片作为主控,其中有用到蓝牙功能.在对蓝牙接口进一步封装的时候,发现 SDK 居然没有停止广播的接口,咨询了代理 FAE,对方也没有找到关闭广播的接口.后来通 ...