keras 分类回归 损失函数与评价指标
1、目标函数
(1)mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()
(2)mean_absolute_error / mae 绝对值均差,公式为(|y_pred-y_true|).mean()
(3) mean_absolute_percentage_error / mape公式为:(|(y_true - y_pred) / clip((|y_true|),epsilon, infinite)|).mean(axis=-1) * 100,和mae的区别就是,累加的是(预测值与实际值的差)除以(剔除不介于epsilon和infinite之间的实际值),然后求均值。
(4)mean_squared_logarithmic_error / msle公式为: (log(clip(y_pred, epsilon, infinite)+1)- log(clip(y_true, epsilon,infinite)+1.))^2.mean(axis=-1),这个就是加入了log对数,剔除不介于epsilon和infinite之间的预测值与实际值之后,然后取对数,作差,平方,累加求均值。
(5)squared_hinge 公式为:(max(1-y_truey_pred,0))^2.mean(axis=-1),取1减去预测值与实际值乘积的结果与0比相对大的值的平方的累加均值。
(6)hinge 公式为:(max(1-y_truey_pred,0)).mean(axis=-1),取1减去预测值与实际值乘积的结果与0比相对大的值的的累加均值。
(7)binary_crossentropy: 常说的逻辑回归, 就是常用的交叉熵函
(8)categorical_crossentropy: 多分类的逻辑
2、性能评估函数
(1)binary_accuracy: 对二分类问题,计算在所有预测值上的平均正确率
(2)categorical_accuracy:对多分类问题,计算再所有预测值上的平均正确率
(3)sparse_categorical_accuracy:与categorical_accuracy相同,在对稀疏的目标值预测时有用
(4)top_k_categorical_accracy: 计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确
(5)sparse_top_k_categorical_accuracy:与top_k_categorical_accracy作用相同,但适用于稀疏情况
参考文献:
keras 分类回归 损失函数与评价指标的更多相关文章
- 感知机、logistic回归 损失函数对比探讨
感知机.logistic回归 损失函数对比探讨 感知机 假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) .其学习策略为,定义(经验)损失函数 ...
- 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记 版权声明: ...
- 秒懂机器学习---分类回归树CART
秒懂机器学习---分类回归树CART 一.总结 一句话总结: 用决策树来模拟分类和预测,那些人还真是聪明:其实也还好吧,都精通的话想一想,混一混就好了 用决策树模拟分类和预测的过程:就是对集合进行归类 ...
- CART(分类回归树)
1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常 ...
- 连续值的CART(分类回归树)原理和实现
上一篇我们学习和实现了CART(分类回归树),不过主要是针对离散值的分类实现,下面我们来看下连续值的cart分类树如何实现 思考连续值和离散值的不同之处: 二分子树的时候不同:离散值需要求出最优的两个 ...
- 机器学习技法-决策树和CART分类回归树构建算法
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增 ...
- 利用CART算法建立分类回归树
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后 ...
- 目标检测——Faster R_CNN使用smooth L1作为bbox的回归损失函数原因
前情提要—— 网上关于目标检测框架——faster r_cnn有太多太好的博文,这是我在组会讲述faster r_cnn这一框架时被人问到的一个点,当时没答上来,于是会下好好百度和搜索一下研究了一下这 ...
- CART决策树(分类回归树)分析及应用建模
一.CART决策树模型概述(Classification And Regression Trees) 决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节 ...
随机推荐
- [No0000117]visual studio 调试WebForm 显示 HTTP Error 403.14 - Forbidden Web 服务器被配置为不列出此目录的内容。
调试界面如下: 解决办法1:右键设置起始页. 影响文件: 解决方案2:Web.config中添加默认页面配置: <system.webServer> <defaultDocument ...
- 配置zsh
.zshrc export ZSH="/root/.oh-my-zsh" ZSH_THEME="robbyrussell" plugins=(git zsh-s ...
- struts2 中 paramsPrepareParamsStack 拦截器
struts2二次参数拦截器内容: 规定了请求的执行顺序 在struts2中,其拦截器为框架精华部分,而二次参数拦截器paramsPrepareParamsStack 对于解决数据回显,对象修改属性 ...
- RabbitMQ的Q&A
默认的IP端口 amqp默认绑定IP(本机所有IP),端口:5672 clustering默认绑定IP(本机所有IP),端口:25672 RabbitMQ Management插件 (本机所有IP), ...
- transformations 变换集合关系 仿射变换
http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/04_transformations.ppt https://group ...
- python摸爬滚打之day11----函数闭包,迭代器
1.函数名 函数名就是一个变量名, 函数名存储的是该函数的内存地址. 函数名都可以进行哪些应用? 函数名可以赋值给其他的变量; 函数名可以作容器里的元素使用; 函数名可以当做形参传进另一函数; ...
- 【PyQt5-Qt Designer】QSpinBox-微调框
QSpinBox-微调框 QSpinBox类提供了一个微调框小部件. QSpinBox被设计为处理整数和离散值集合(例如,月份名称):使用QDoubleSpinBox 可以作为浮点数的调整. QSpi ...
- GBDT原理学习
首先推荐 刘建平 的博客学习算法原理推导,这位老师的讲解都很详细,不过GBDT的原理讲解我没看明白, 而是1.先看的https://blog.csdn.net/zpalyq110/article/de ...
- win10 下JDK10的下载安装与环境变量配置
一.下载 首先,要在win10 操作系统上安装jdk,就要去oracle官网下载合适的jdk版本,在这里以jdk10进行安装 下载链接:http://www.oracle.com/technetwor ...
- 【JMeter】【性能测试】响应信息不明确的接口做关联
1:做接口关联的时候,发现接口响应没有可以利用的信息.如下图只返回了一个成功的标识,这样的接口如何与之关联? 通过抓包观察后续的修改功能,发现需要传入一个id和一个title.但是前面的接口没有返回, ...