http://poj.org/problem?id=1408

题意:给出 a1 a2 ... an
               b1 b2 ... bn 
               c1 c2 ... cn 
               d1 d2 ... dn 这些点,求这些对应点连线形成的小四边形的最大面积。

思路:将所有的交点求出,同已知点一起存入二维矩阵中,枚举每个小四边形,求出其面积,找出最大的即可。

 #include <stdio.h>
#include <stdlib.h>
#include <math.h>
const double eps=1e-;//设置精度
#define max1(a1,b1) (double)a1-(double)b1>eps?(double)a1:(double)b1
struct point//点
{
double x;
double y;
} map[][];//用二维数组的结构体存储所有的点
struct line//线
{
double a,b,c;
};
line getline(point p1,point p2)//由两点求直线ax+by+c=0
{
line tmp;
tmp.a = p1.y-p2.y;
tmp.b = p2.x-p1.x;
tmp.c = p1.x*p2.y-p2.x*p1.y;
return tmp;
}
point getIntersect(line L1,line L2)//求两直线交点
{
point tmp;
tmp.x = (L1.b*L2.c-L2.b*L1.c)/(L1.a*L2.b-L2.a*L1.b);
tmp.y = (L1.c*L2.a-L2.c*L1.a)/(L1.a*L2.b-L2.a*L1.b);
return tmp;
}
double area_polygon(int n,point* p)//求多边形面积
{
double s1=,s2=;
int i;
for (i=; i<n; i++)
{
s1+=p[(i+)%n].y*p[i].x;
s2+=p[(i+)%n].y*p[(i+)%n].x;
}
return fabs(s1-s2)/;
}
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
double Max = eps;
double a,b,c,d;
map[][].x = ;//初始化已知的四个顶点的坐标
map[][].y = ;
map[][n+].x = ;
map[][n+].y = ;
map[n+][].x = ;
map[n+][].y = ;
map[n+][n+].x = ;
map[n+][n+].y = ;
for (int j = ; j <= n; j++)//输入a1 a2 ... an,并存储其坐标
{
scanf("%lf",&a);
map[][j].x = a;
map[][j].y = ;
}
for (int j = ; j <= n; j++)//输入b1 b2 ... bn,并存储其坐标
{
scanf("%lf",&b);
map[n+][j].x = b;
map[n+][j].y = ;
}
for (int i = ; i <= n; i++)//输入c1 c2 ... cn,并存储其坐标
{
scanf("%lf",&c);
map[i][].x = ;
map[i][].y = c;
}
for (int i =; i <= n; i++)//输入d1 d2 ... dn,并存储其坐标
{
scanf("%lf",&d);
map[i][n+].x = ;
map[i][n+].y = d;
}
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
{
line L1 = getline(map[i][],map[i][n+]);//枚举所有可相交的直线
line L2 = getline(map[][j],map[n+][j]);
point tmp = getIntersect(L1,L2);//求这两条线的交点
map[i][j].x = tmp.x;//将求得的交点坐标存入相应的数组中
map[i][j].y = tmp.y; }
point p[];//存储四边形的顶点
for (int i = ; i <= n+; i++)
{ for (int j = ; j <= n+; j++)//枚举所有四边形右上角的顶点
{
p[] = map[i][j];//以map[i][j]为右上角的顶点组成的四边形的各点
p[] = map[i][j-];
p[] = map[i-][j-];
p[] = map[i-][j];
double s = area_polygon(,p);//求四边形的面积
Max = max1(s,Max);//求最大面积
} }
printf("%.6f\n",Max);
}
return ;
}

Fishnet(几何)的更多相关文章

  1. [ACM_几何] Fishnet

      http://acm.hust.edu.cn/vjudge/contest/view.action?cid=28417#problem/C 本题大意:有一个1X1的矩形,每边按照从小到大的顺序给n ...

  2. 关于Three.js基本几何形状之SphereGeometry球体学习

    一.有关球体SphereGeometry构造函数参数说明 <1>.SphereGeometry(radius, widthSegments, heightSegments, phiStar ...

  3. 几何服务,cut功能测试

    关于几何服务 几何服务用于辅助应用程序执行各种几何计算,如缓冲区.简化.面积和长度计算以及投影.在 ArcGIS Server 管理器中启动几何服务之后,您才能够在应用程序开发过程中使用该服务. 问题 ...

  4. 几何服务,cut功能,输入要素target(修改后)内容。

    几何服务,cut功能测试,输入要素target(修改后)内容. {"displayFieldName":"","fieldAliases": ...

  5. 几何服务,cut功能,输入要素target(修改前)内容。

    几何服务,cut功能测试,输入要素target(修改前)内容. {"geometryType":"esriGeometryPolyline","geo ...

  6. 如何让你的UWP应用程序无缝调用几何作图

    有时候需要编辑一些几何图形,如三角形,圆锥曲线等,在UWP应用中加入这些几何作图功能是件费时间又很难做好的事.其实Windows 10 应用商店中已有一些专业的几何作图工具了,那么能借来一用吗?答案是 ...

  7. poj 2031Building a Space Station(几何判断+Kruskal最小生成树)

    /* 最小生成树 + 几何判断 Kruskal 球心之间的距离 - 两个球的半径 < 0 则说明是覆盖的!此时的距离按照0计算 */ #include<iostream> #incl ...

  8. NOIP2002矩形覆盖[几何DFS]

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  9. DOM 元素节点几何量与滚动几何量

    当在 Web 浏览器中查看 HTML 文档时,DOM 节点被解析,并被渲染成盒模型(如下图),有时我们需要知道一些信息,比如盒模型的大小,盒模型在浏览器中的位置等等,本文我们就来详细了解下元素节点的几 ...

随机推荐

  1. 论文deadline 最后三天

    2015.12.29 星期二 内容整改 2015.12.30 星期三 参考文献,摘要等 2015.12.31 星期四 最后修改 尽最大的努力去做好论文的事情.

  2. 12--C++_运算符重载

    C++_运算符重载 什么是运算符的重载? 运算符与类结合,产生新的含义. 为什么要引入运算符重载? 作用:为了实现类的多态性(多态是指一个函数名有多种含义) 怎么实现运算符的重载? 方式:类的成员函数 ...

  3. SQL查询性能优化

    使用高效的查询 使用 EXISTS 代替 IN -- 查询A表中同时存在B表的数据 -- 慢 SELECT * FROM Class_A WHERE id IN (SELECT id FROM Cla ...

  4. Origin C调用NAG库

    NAG(Numerical Algorithms Group, www.nag.com)库是一个无与伦比的算法库,它提供的算法可靠.轻便.严谨,覆盖了数学与统计方方面面.最大的缺点就是:它是一个收费的 ...

  5. 关联API

    在类或者函数定义之前加上关联代码 API_XXX

  6. Flask - 请求处理流程和上下文源码分析

    目录 Flask - 请求处理流程和上下文 WSGI Flask的上下文对象及源码解析 0. 请求入口 1.请求上下文对象的创建 2. 将请求上下文和应用上下文入栈 3.根据请求的URl执行响应的视图 ...

  7. 第五节:web爬虫之urllib(一)

    一.urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, cadefault=False,    ...

  8. Keil-MDK编译完成后代码大小

    Code 代表执行的代码,程序中所有的函数都位于此处. RO-data 代表只读数据,程序中所定义的全局常量数据和字符串都位于此处. RW-data 代表已初始化的读写数据,程序中定义并且初始化的全局 ...

  9. hdu2007 平方和与立方和【C++】

    平方和与立方和 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  10. 【LeetCode Weekly Contest 26 Q1】Longest Uncommon Subsequence I

    [题目链接]:https://leetcode.com/contest/leetcode-weekly-contest-26/problems/longest-uncommon-subsequence ...