给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。

此题因为是无自环无重边,所以是简单图。用判定简单图可图化的Havel-Hakimi定理。

Havel-Hakimi定理:

一个度序列:

是简单图度序列当且仅当:

是简单图的度序列。

简单来讲,算法流程如下:

设度序列为d1,d2,d3....dn

1.如果度序列中元素有负数或者度序列和不为偶数,则肯定不可图。

2.每次取度序列中最大元素,设为M,如果M>n-1(n为此时的元素数),则不可图。否则取次大的M个元素,将他们都减1,再次加入到度序列中,元素数减1,如此往复,直到:

(1)度序列出现负数元素,则不可图,退出。

(2)度序列全为0,则可图,退出。

回到题目,这题由于n过大(10^5),所以不能每次都排序来找前M大的数,所以考虑用优先队列来实现高效的插入,排序,取最大元素等操作。

(优先队列的复杂度)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <functional>
using namespace std;
#define N 100007 priority_queue<int,vector<int>,less<int> > que;
queue<int> tmp; int check(int n)
{
int dmax,k,i;
while()
{
dmax = que.top();
que.pop();
if(dmax > n-)
return ;
while(dmax--)
{
k = que.top();
que.pop();
k--;
if(k < )
return ;
tmp.push(k);
}
while(!tmp.empty())
{
k = tmp.front();
tmp.pop();
que.push(k);
}
dmax = que.top();
if(dmax == || n == )
break;
n--;
}
return ;
} int main()
{
int t,n,i,x;
scanf("%d",&t);
while(t--)
{
while(!que.empty())
que.pop();
while(!tmp.empty())
tmp.pop();
scanf("%d",&n);
int flag = ;
int sum = ;
for(i=;i<n;i++)
{
scanf("%d",&x);
if(x < )
flag = ;
que.push(x);
sum += x;
}
if(!flag || sum%)
{
puts("NO");
continue;
}
flag = check(n);
if(flag)
puts("YES");
else
puts("NO");
}
return ;
}

UESTC 913 握手 Havel定理+优先队列的更多相关文章

  1. cdoj913-握手 【Havel定理】

    http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others)     Memory Limit ...

  2. POJ1659 Frogs' Neighborhood(Havel定理)

    给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Have ...

  3. Havel定理

    先贴一个百度百科的注释 Havel定理编辑 本词条缺少概述.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 Havel定理 外文名 Canisters theorem 特    ...

  4. LD1-M(简单图的判定+构造,Havel定理)

    题目链接 /* *题目大意: *给出一个图的每个点的度的序列,求能否构成一个简单图,如果能构出简单图,则输出图的邻接矩阵; * *算法思想: *Havel定理的应用; *给定一个非负整数序列{dn}, ...

  5. HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)

    主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiya ...

  6. POJ 1659 Frogs' Neighborhood (Havel定理构造图)

    题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...

  7. 【Havel 定理】Degree Sequence of Graph G

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...

  8. Havel定理 poj1659

    http://blog.csdn.net/xcszbdnl/article/details/14174669 代码风格这里的 Frogs' Neighborhood Time Limit: 5000M ...

  9. 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)

    Graph Reconstruction Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Let there ...

随机推荐

  1. 使用jQuery库改造ajax

    html页 ---------------------------------------------------------------------------------------------- ...

  2. ahjesus C# 4.0 Parallel 并行运算

    Parallel.For - for 循环的并行运算 Parallel.ForEach - foreach 循环的并行运算 Parallel.Invoke - 并行调用多个任务 Task - 任务,基 ...

  3. RCA端子颜色(红、白、黄)

    RCA端子(红白黄)的作用: 黄:视频 红:左声道 白:右声道 RCA为两口插头,红色代表左声道,白色为右声道,3.5(AUX口)同样为立体声接头,虽然它只有一个端口,同样也具有左右声道分开传输的功能 ...

  4. 自定义HttpMessageHandler实现HTTP方法的重写

    自定义HttpMessageHandler实现HTTP方法的重写

  5. C++之函数重载

    函数重载定义: 如果同一作用域内的几个函数名字相同但形参列表不同; 重载与const形参: Record (Phone); = Record(const Phone); Record(Phone*) ...

  6. 【JavaEE】SSH+Spring Security基础上配置AOP+log4j

    Spring Oauth2大多数情况下还是用不到的,主要使用的还是Spring+SpringMVC+Hibernate,有时候加上SpringSecurity,因此,本文及以后的文章的example中 ...

  7. docker入门指南(转载)

    原文: http://bg.biedalian.com/2014/11/20/docker-start.html 关于 docker 今天云平台的同事提到, 现在的运维就是恶性循环, 因为大家都在申请 ...

  8. CSS层次选择器温故-2

    1.层次选择器 通过HTML的DOM元素间的层次关系获取元素,层次关系包括后代.父子.相邻兄弟和通用兄弟,通过其中某类关系可以方便快捷地选定需要的元素 2.语法 3.兼容性 IE7以及以上版本 4.后 ...

  9. java中判断字符串是否为数字的方法

    一: //1.用JAVA自带的函数 public static boolean isNumeric(String str){ for (int i = 0; i < str.length(); ...

  10. 桥牌笔记:Skill 4 Series A–Deal 5

    南主打5C. 此牌的难点在于:如果黑桃4-2分布时,有没有打成的希望?看来黑桃.红桃.方块各1个失张无法避免? 但希望还是有的,那就是东家拿2张黑桃,并且有3张将牌. 这时庄家可以清2轮将牌,拔2轮黑 ...