1. 绘制图表组成元素的主要函数

1.1 plot()——展现量的变化趋势

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.cos(x) plt.plot(x, y, ls="-", lw=2, label="plot figure")
plt.legend()
plt.show()

1.2 scatter()——寻找变量之间的关系

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.random.rand(1000) plt.scatter(x, y, label="scatter figure")
plt.legend()
plt.show()

1.3 xlim()——设置x轴的数值显示范围

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.random.rand(1000) plt.scatter(x, y, label="scatter figure")
plt.legend()
plt.xlim(0.05, 10)
plt.ylim(0, 1)
plt.show()

1.4 xlabel()——设置x轴的标签文本

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.sin(x) plt.plot(x, y, ls="--", lw=2, c="c", label="plot figure")
plt.legend()
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.show()

1.5 grid()——绘制刻度线的网格线

import numpy as np
import matplotlib.pyplot as plt
import matplotlib matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.sin(x) plt.plot(x, y, ls="-.", lw=2, c="c", label="plot figure")
plt.legend()
plt.grid(linestyle=":", color="r")
plt.show()

grid()函数的主要参数为grid(b, which, axis, color, linestyle, linewidth, **kwargs)

  • b:布尔值。就是是否显示网格线的意思。官网说如果b设置为None, 且kwargs长度为0,则切换网格状态
  • which:取值为major, minorboth。 默认为major
  • axis:取值为bothxy。就是想绘制哪个方向的网格线
  • color:这就不用多说了,就是设置网格线的颜色。或者直接用c来代替color也可以
  • linestyle:也可以用ls来代替linestyle, 设置网格线的风格,是连续实线,虚线或者其它不同的线条

1.6 axhline()——绘制平行于x轴的水平参考线

import numpy as np
import matplotlib.pyplot as plt
import matplotlib matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.sin(x) plt.plot(x, y, ls="-.", lw=2, c="c", label="plot figure")
plt.legend()
plt.axhline(y=0.0, c="r", ls="--", lw=2)
plt.axvline(x=4.0, c="r", ls="--", lw=2)
plt.show()

1.7 axvspan()——绘制垂直于x轴的参考区域

import numpy as np
import matplotlib.pyplot as plt
import matplotlib matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.sin(x) plt.plot(x, y, ls="-.", lw=2, c="c", label="plot figure")
plt.legend()
plt.axvspan(xmin=4.0, xmax=6.0, facecolor="y", alpha=0.3)
plt.axhspan(ymin=0.0, ymax=0.5, facecolor="y", alpha=0.3)
plt.show()

1.8 annotate()——添加图形内容细节的指向型注释文本

import numpy as np
import matplotlib.pyplot as plt
import matplotlib matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.sin(x) plt.plot(x, y, ls="-.", lw=2, c="c", label="plot figure")
plt.legend()
plt.annotate(s="maximum",
xy=(np.pi / 2, 1.0),
xytext=((np.pi / 2) + 1.0, 0.8),
weight="bold",
color="b",
arrowprops=dict(arrowstyle="->", connectionstyle="arc3", color="b")
)
plt.show()

xy:被注释图形内容的位置坐标

xytext:注释文本的位置坐标

weight:注释文本的字体粗细风格

color:注释文本的字体颜色

arrowprops:指示被注释内容的箭头的属性字典

1.9 text()——添加图形内容细节的无指向型注释文本

import numpy as np
import matplotlib.pyplot as plt
import matplotlib matplotlib.use('Qt5Agg') x = np.linspace(0.05, 10, 1000)
y = np.sin(x) plt.plot(x, y, ls="-.", lw=2, c="c", label="plot figure")
plt.legend()
plt.text(x=3.10, y=0.09, s="y=sin(x)", weight="bold", color="b")
plt.show()

1.10 title()——添加图形内容的标题

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt x = np.linspace(-2, 2, 1000)
y = np.exp(x) plt.plot(x, y, ls="-", lw=2, color="g") plt.title("center demo") plt.title("left demo", loc="left",
fontdict={"size": "xx-large",
"color": "r",
"family": "Times New Roman"}) plt.title("right demo", loc="right",
family="Comic Sans MS", size=20,
style="oblique", color="c") plt.show()

主要参数都在上面代码里体现了

1.11 legend()——表示不同图形的文本标签图例

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt x = np.arange(0, 2.1, 0.1)
y = np.power(x, 3)
y1 = np.power(x, 2)
y2 = np.power(x, 1) plt.plot(x, y, ls="-", lw=2, label="$x^3$")
plt.plot(x, y1, ls="-", lw=2, label="$x^2$")
plt.plot(x, y2, ls="-", lw=2, label="$x^1$") plt.legend(loc="upper left",fontsize="x-large", bbox_to_anchor=(0.05, 0.95), ncol=3,
title="power function", shadow=True, fancybox=True) plt.show()
  • loc参数控制图例的位置,可选值为

    • best
    • upper right
    • upper left
    • lower left
    • lower right
    • right
    • center left
    • center right
    • lower center
    • upper center
    • center
  • fontsize控制图例字体大小,可选值为

    • int
    • float
    • xx-small
    • x-small
    • small
    • medium
    • large
    • x-large
    • xx-large
  • frameonTrueFalse,是否显示图例边框
  • edgecolor:图例边框颜色
  • facecolor:图例背景颜色,若无边框,参数无效
  • title:设置图例标题
  • fancyboxTrue表示线框直角,False表示线框圆角
  • shadowTrueFalse,是否显示阴影

2. 常用配置参数

2.1 线型

linestylels

  • -:实线
  • --:虚线
  • -.:点划线
  • ::点线

2.2 线宽

linewidthlw

  • 浮点数

2.3 线条颜色

colorc

  • b:blue,蓝色
  • g:green,绿色
  • r:red,红色
  • c:cyan,蓝绿
  • m:magenta,洋红
  • y:yellow,黄色
  • k:black,黑色
  • w:white,白色

也可以对关键字参数color赋十六进制的RGB字符串如 color='#900302'

2.4 点标记类型

marker,只能用以下简写符号表示

  • .:point marker
  • ,:pixel marker
  • o:circle marker
  • v:triangle_down marker
  • ^:triangle_up marker
  • <:triangle_left marker
  • >:triangle_right marker
  • 1:tri_down marker
  • 2:tri_up marker
  • 3:tri_left marker
  • 4:tri_right marker
  • s:square marker
  • p:pentagon marker
  • *:star marker
  • h:hexagon1 marker
  • H:hexagon2 marker
  • +:plus marker
  • x:x marker
  • D:diamond marker
  • d:thin_diamond marker
  • |:vline marker
  • _:hline marker

特别地,标记还有mathtext模式

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl mpl.use('Qt5Agg')
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串 x = np.arange(1, 13, 1)
y = np.array([12, 34, 22, 30, 18, 13, 15, 19, 24, 28, 23, 27]) fig, ax = plt.subplots(2, 2) ax[0, 0].scatter(x, y * 1.5, marker=r"$\clubsuit$", c="#fb8072", s=500)
ax[0, 0].locator_params(axis="x", tight=True, nbins=11)
ax[0, 0].set_xlim(0, 13)
ax[0, 0].set_xticks(x)
ax[0, 0].set_title('显示样式{}的散点图'.format(r"$\clubsuit$")) ax[0, 1].scatter(x, y - 2, marker=r"$\heartsuit$", c="#fb8072", s=500)
ax[0, 1].locator_params(axis="x", tight=True, nbins=11)
ax[0, 1].set_xlim(0, 13)
ax[0, 1].set_xticks(x)
ax[0, 1].set_title('显示样式{}的散点图'.format(r"$\heartsuit$")) ax[1, 0].scatter(x, y + 7, marker=r"$\diamondsuit$", c="#fb8072", s=500)
ax[1, 0].locator_params(axis="x", tight=True, nbins=11)
ax[1, 0].set_xlim(0, 13)
ax[1, 0].set_xticks(x)
ax[1, 0].set_title('显示样式{}的散点图'.format(r"$\diamondsuit$")) ax[1, 1].scatter(x, y - 9, marker=r"$\spadesuit$", c="#fb8072", s=500)
ax[1, 1].locator_params(axis="x", tight=True, nbins=11)
ax[1, 1].set_xlim(0, 13)
ax[1, 1].set_xticks(x)
ax[1, 1].set_title('显示样式{}的散点图'.format(r"$\spadesuit")) plt.suptitle("不同原始字符串作为标记类型的展示效果", fontsize=16, weight="black") plt.show()

官网有一张属性表,先贴在这,以后有空会再补充内容的

『Python』matplotlib常用函数的更多相关文章

  1. 『Python』matplotlib常用图表

    这里简要介绍几种统计图形的绘制方法,其他更多图形可以去matplotlib找examples魔改 1. 柱状图 柱状图主要是应用在定性数据的可视化场景中,或是离散数据类型的分布展示.例如,一个本科班级 ...

  2. 『Python』matplotlib划分画布的主要函数

    1. subplot() 绘制网格区域中几何形状相同的子区布局 函数签名有两种: subplot(numRows, numCols, plotNum) subplot(CRN) 都是整数,意思是将画布 ...

  3. 『Python』pycharm常用设置

    学习一下pycharm的快捷操作,提升速度,也提升舒适度,笑. 常用快捷键 ctrl + d :复制粘贴本行到下一行 ctrl + y :删除本行 ctrl + 鼠标点击 :跳转 ctrl + / : ...

  4. 『Python』为什么调用函数会令引用计数+2

    一.问题描述 Python中的垃圾回收是以引用计数为主,分代收集为辅,引用计数的缺陷是循环引用的问题.在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存. sys.g ...

  5. 『Python』matplotlib的imshow用法

    热力图是一种数据的图形化表示,具体而言,就是将二维数组中的元素用颜色表示.热力图之所以非常有用,是因为它能够从整体视角上展示数据,更确切的说是数值型数据. 使用imshow()函数可以非常容易地制作热 ...

  6. 『Python』matplotlib实现动画效果

    一般而言,在绘制复杂动画时,主要借助模块animation来完成 import numpy as np import matplotlib.pyplot as plt import matplotli ...

  7. 『Python』matplotlib坐标轴应用

    1. 设置坐标轴的位置和展示形式 import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl mpl.use ...

  8. 『Python』matplotlib共享绘图区域坐标轴

    1. 共享单一绘图区域的坐标轴 有时候,我们想将多张图形放在同一个绘图区域,不想在每个绘图区域只绘制一幅图形.这时候,就可以借助共享坐标轴的方法实现在一个绘图区域绘制多幅图形的目的. import n ...

  9. 『Python』matplotlib实现GUI效果

    1. 类RadioButtons的使用方法 类似单选框 import numpy as np import matplotlib.pyplot as plt import matplotlib as ...

随机推荐

  1. 内存吞金兽(Elasticsearch)的那些事儿 -- 认识一下

    背景及常见术语 背景 Elasticsearch 是一个开源的搜索引擎,建立在一个全文搜索引擎库 Apache Lucene 基础之上. Lucene 可以说是当下最先进.高性能.全功能的搜索引擎库- ...

  2. visual studio code 中文

    1.按住ctrl+shift+p键,在框中输入configure,在下拉选项中选取language选项 2.打开locale.json文件,修改语言配置 3.修改完保存,然后重新启动vscode 4. ...

  3. ORM 之 EF的使用(一)

    早期对数据库进行操作 通过Ado.Net 操作数据库 需要操作sqlCommand/sqlConnection/adapter/datareader 如图 后来 基于面向对象的思想 出现了中间件ORM ...

  4. js对url进行编码和解码

    编码 只有 0-9[a-Z] $ - _ . + ! * ' ( ) , 以及某些保留字,才能不经过编码直接用于 URL. 例如:搜索的中文关键字,复制网址之后再粘贴就会发现该URL已经被转码. 1. ...

  5. 使用volatile的条件

    使用volatile的值不能依赖于它之前的值: volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果. ...

  6. mzy git学习,撤销修改(二)

    git checkout – file: 撤销我们对工作区的修改(没有提交到暂存区) 当我们在工作区修改了之后,并没有提交到暂存区,如果要撤销对 某个文件的修改的话,就使用 git checkout ...

  7. IDEA常用设置及推荐插件

    IDEA常用设置及推荐插件 本文主要记录IDEA的一些常用设置,IDEA与Eclipse的常用快捷键对比及推荐一些好用的插件. 基本设置 设置界面风格及修改外部UI尺寸大小 打开IDEA时设置不重新打 ...

  8. shell 字符串判空

    2021-09-01 1. 字符串判空主要用到两个参数 -z 判断字符串为空否 -n 判断字符串不为空 2. 实例 #!/bin/bash PID=`date` if [ -z "$PID& ...

  9. Vue 组件通信方案

    父组件--> 子组件 1. 属性设置 父组件关键代码如下: <template> <Child :child-msg="msg"></Child ...

  10. docker开启remote-api 2375端口后,Failed to start Docker Application Container Engine,重启docker失败的问题解决

    1.  按照网上的教程修改了 /usr/lib/systemd/system/docerk.service配置后,重启失败.修改/etc/docker/daemon.json 增加hosts后重启也是 ...