【BZOJ4316】小C的独立集(仙人掌,动态规划)

题面

BZOJ

题解

除了普通的动态规划以外,这题还可以用仙人掌的做法来做。

这里没有必要把圆方树给建立出来

\(Tarjan\)的本质其实就是一个构建\(dfs\)树的过程

所以我们在\(Tarjan\)的过程中求解就行了

我们设\(f[i][0/1]\)表示当前节点为\(i\),选或不选的子树的最大独立集

当一条边是树边的时候,转移和树上的转移相同。

否则暂时不转移。

当我们做完当前点,发现它是一个环的最顶端的时候,我们需要重新对于这个环计算一遍答案。

我们需要明白一点:对于环上的节点,只与环有关,挂在环外面的子树可以直接计算在一起。

现在考虑对于环如何重新计算答案

从这个环的最底端开始往上跳,每次合并一次答案

先考虑如何计算最顶端不选

这样子最底端选或者不选是没有关系的。

维护两个变量\(f_0,f_1\),表示当前点选或者不选的答案

向上转移和树上的转移就是一样的了。

把算出来的\(f_0\)直接加给顶点

然后计算顶端选,

那么最底下的那个点就一定不能选,直接令\(f_1\)初值为\(-\infty\)就好了

这样子做完就相当于把环给单独拎出来考虑,

然后就变成了树上的\(dp\)了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 55555
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX*3];
int h[MAX],cnt=1;
int n,m,fa[MAX],f[MAX][2],dfn[MAX],low[MAX],tim;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
void dp(int u,int y)
{
int t0,t1,f0=0,f1=0;
for(int i=y;i!=u;i=fa[i])
{
t0=f0+f[i][0];t1=f1+f[i][1];
f0=max(t0,t1);f1=t0;
}
f[u][0]+=f0;
f0=0;f1=-1e9;
for(int i=y;i!=u;i=fa[i])
{
t0=f0+f[i][0];t1=f1+f[i][1];
f0=max(t0,t1);f1=t0;
}
f[u][1]+=f1;
}
void dfs(int u,int ff)
{
fa[u]=ff;dfn[u]=low[u]=++tim;
f[u][1]=1;f[u][0]=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])dfs(v,u),low[u]=min(low[u],low[v]);
else if(v!=ff)low[u]=min(low[u],dfn[v]);
if(low[v]>dfn[u])
f[u][1]+=f[v][0],f[u][0]+=max(f[v][0],f[v][1]);
}
for(int i=h[u];i;i=e[i].next)
if(fa[e[i].v]!=u&&dfn[u]<dfn[e[i].v])
dp(u,e[i].v);
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dfs(1,0);
printf("%d\n",max(f[1][0],f[1][1]));
return 0;
}

【BZOJ4316】小C的独立集(仙人掌,动态规划)的更多相关文章

  1. [BZOJ4316]小C的独立集 仙人掌?

    题目链接 因为xls让我每周模拟一次,然后学习模拟中没有学过的东西.所以就来学圆方树. 本来这道题用不着圆方树,但是圆方树是看yyb的博客学的,他在里面讲一下作为一个引子,所以也来写一下. 首先来Ta ...

  2. 【BZOJ4316】小C的独立集(动态规划)

    [BZOJ4316]小C的独立集(动态规划) 题面 BZOJ 题解 考虑树的独立集求法 设\(f[i][0/1]\)表示\(i\)这个点一定不选,以及\(i\)这个点无所谓的最大值 转移\(f[u][ ...

  3. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  4. BZOJ 4316: 小C的独立集 仙人掌 + 树形DP

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...

  5. BZOJ4316 小C的独立集 【仙人掌】

    题目 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多. ...

  6. 2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)

    传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+ ...

  7. bzoj4316小C的独立集(dfs树/仙人掌+DP)

    本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...

  8. [BZOJ4316]小C的独立集(圆方树DP)

    题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...

  9. bzoj4316: 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  10. BZOJ.4316.小C的独立集(仙人掌 DP)

    题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...

随机推荐

  1. Day11 Python基础之装饰器(高级函数)(九)

    在python中,装饰器.生成器和迭代器是特别重要的高级函数   https://www.cnblogs.com/yuanchenqi/articles/5830025.html 装饰器 1.如果说装 ...

  2. 用WSDL4J解析types标签中的内容

    WSDL4J是一种用来解析WSDL文本的常用工具. 但网络上用WSDL4J来解析wsdl文档complexType标签中内容的问题一大堆也没有有效的解决方法.今天在我“遍历”wsdl4j的api文档和 ...

  3. 一个出色的表格(React实现__ES5语法)

    本文主要是<React快速上手开发>一书中,第三章的内容代码整理,因为书中的代码零零散散,所以自己将整理了一下. 排序和编辑功能 <script> var header = [ ...

  4. java kill thread command line

    multithreading - How do you kill a Thread in Java? - Stack Overflowhttps://stackoverflow.com/questio ...

  5. HDU 4913 Least common multiple

    题目:Least common multiple 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4913 题意:有一个集合s,包含x1,x2,...,xn, ...

  6. VUE.JS 使用axios数据请求时数据绑定时 报错 TypeError: Cannot set property 'xxxx' of undefined 的解决办法

    正常情况下在data里面都有做了定义 在函数里面进行赋值 这时候你运行时会发现,数据可以请求到,但是会报错 TypeError: Cannot set property 'listgroup' of ...

  7. Python创建virtualenv(虚拟环境)方法

    本文目录 一 前言 二 通过virtualenv软件创建 三 在pycharm下创建 新建项目 四 已有项目使用和创建虚拟环境 五 参数说明 一 前言 需求:        --公司之有一台服务器   ...

  8. python学习笔记(7)--循环语句

    循环语句如下: for i in range(start, end): //注意 前闭后开 coding for i in range(m,n,k): coding for c in s: codin ...

  9. vue element-ui 绑定@keyup事件无效

    解决办法: <el-input @keyup.native="ajax"></el-input> 加上.native覆盖原有封装的keyup事件即可

  10. fiddler学习笔记2 字段说明;移动设备、解密证书

    # :           抓取顺序从1开始递增 result:    http 请求状态 protocol:   请求使用的协议如:http https ftp Host:         请求地址 ...