【bzoj2005】 [Noi2010]能量采集

Time Limit: 1 Sec  Memory Limit: 256 MB

题目连接

http://www.lydsy.com/JudgeOnline/problem.php?id=2005

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的 能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

5 4

Sample Output

36

HINT

对于10%的数据:1 ≤ n, m ≤ 10;
对于50%的数据:1 ≤ n, m ≤ 100;
对于80%的数据:1 ≤ n, m ≤ 1000;
对于90%的数据:1 ≤ n, m ≤ 10,000;
对于100%的数据:1 ≤ n, m ≤ 100,000。

题意

题解:

和之前做的某道题很类似,很显然的就能推出来,每一个点与(0,0)之间连线中有多少个点,就是gcd(x,y)

暴力搞一搞,可以拿80分
拿100分呢?我们就让f[i]表示gcd=i的个数,很显然,gcd的个数等于(n/i*m/i)再减去i的倍数就好啦
‘然后就类似DP一样,搞一搞就行了 

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200001
#define mod 10007
#define eps 1e-9
//const int inf=0x7fffffff; //无限大
const int inf=0x3f3f3f3f;
/*
inline ll read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int buf[10];
inline void write(int i) {
int p = 0;if(i == 0) p++;
else while(i) {buf[p++] = i % 10;i /= 10;}
for(int j = p-1; j >=0; j--) putchar('0' + buf[j]);
printf("\n");
}
*/
//************************************************************************************** int gcd(int x,int y)
{
return y==?x:gcd(y,x%y);
}
ll f[maxn];
int main()
{
ll n,m;
cin>>n>>m;
if(n<m)
swap(n,m);
ll ans=;
for(ll i=n;i;i--)
{
f[i]=(n/i)*(m/i);
for(ll j=*i;j<=n;j+=i)
f[i]-=f[j];
ans+=f[i]*(*i-);
}
cout<<ans<<endl;
}

【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)的更多相关文章

  1. [BZOJ2005][NOI2010]能量采集 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 发现与$(0,0)$连线斜率相同的点会被挡住.也就是对于$(a,b)$且$gcd(a ...

  2. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  3. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  4. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  5. [NOI2010] 能量采集 (数学)

    [NOI2010] 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. ...

  6. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  7. NOI2010能量采集(数学)

    栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每 ...

  8. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  9. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

随机推荐

  1. linux下定时器介绍1

    POSIX Timer 间隔定时器 setitimer 有一些重要的缺点,POSIX Timer 对 setitimer 进行了增强,克服了 setitimer 的诸多问题: 首先,一个进程同一时刻只 ...

  2. jdbc一次性采集mysql和oracle的海量数据,5000W+为例

    最近做的采集工具遇到采集一天数据(超过5000W行数据)的情况, 采集mysql的时候直接采用流式读取的方式可以一次全部都读取出来,速度的话取决于网络速度 stmt = conn.createStat ...

  3. Little C Loves 3 I

    CF#511 div2 A 现场掉分赛(翻车),就是这道题被叉了...qwq 其实就是一道水题: 因为CF有spj,所以直接构建特殊情况就行了. 当 n 是3的倍数的时候,显然 1,1,(n-2) 显 ...

  4. wpf mvvm模式下的image绑定

    view文件 <Image Grid.Column="2" Width="48" Height="64" Stretch=" ...

  5. C++ 必须使用初始化列表

    继承关系中,父类无默认构造函数 类类型类成员变量无默认构造函数 const类型成员变量 引用类型成员变量 不使用初始化列表,在创建对象调用构造函数之前会对所有的成员变量进行默认初始化,然后再执行构造函 ...

  6. Kafka ACL使用实战(单机版)

    一.简介 自0.9.0.0.版本引入Security之后,Kafka一直在完善security的功能.当前Kafka security主要包含3大功能:认证(authentication).信道加密( ...

  7. MySQL下concat函数中null值问题

    在mysql中,使用CONCAT(str1,str2,...)函数拼接字符串的过程中,如果你拼接的字段当中有值为null,那么拼接的结果就为null 注: select CONCAT(字段1,字段2) ...

  8. Python3语法详解

    一.下载安装 1.1Python下载 Python官网:https://www.python.org/ 1.2Python安装 1.2.1 Linux 平台安装 以下为在Unix & Linu ...

  9. pymongo处理正则表达式的情况

    在python里使用pymongo处理mongodb数据库,在插入或者查询的时候,我们有时需要使用操作符号,如set,in, 具体操作符的可以参考  https://docs.mongodb.com/ ...

  10. C++中memcpy和memmove

    二者都是内存拷贝 memcpy内存拷贝,没有问题;memmove,内存移动?错,如果这样理解的话,那么这篇文章你就必须要好好看看了,memmove还是内存拷贝.那么既然memcpy和memmove二者 ...