单模式串匹配----浅谈kmp算法
flag:字符串小结。
模式串匹配,顾名思义,就是看一个串是否在另一个串中出现,出现了几次,在哪个位置出现;
p.s. 模式串是前者,并且,我们称后一个 (也就是被匹配的串)为文本串;
在这篇博客的代码里,s1均为文本串,s2均为模式串;
一般地,文本串长度不小于匹配串;(否则无意义)
很显然可以得到一个暴力的做法 :
for i : ~lenth_of_s1 {//枚举匹配串在文本串中的开始位置
for j : ~lenth_of_s2
if(s2[j]!=s1[i+j-]) break;
if j>lenth_of_s2 //在循环结束前没有break
output : i
}
时间复杂度:O ( TLE ) ------ O (N+M) ~ O(N*M)
所以需要一个更优的算法;
可以发现,在枚举匹配串在文本串中的开始位置时,有很多步骤是无效的,因为匹配串的第一个字符 很有可能和当前枚举到的开始位置 不同;
所以可以优化这个过程,每次改变开始位置时,直接移动到下一个和匹配串第一个字符相同的位置 (类似于链表;
int next[N], pos=-;
char head = s2[]; for i : lenth_of_s1~
if s1[i]==head {
next[i] = pos;
pos = i;
}
next[] = pos; for i = next[] ; i != - ; i = next[i] {
for j : ~lenth_of_s2
if(s2[j]!=s1[i+j-]) break;
if j>lenth_of_s2 //在循环结束前没有break
output : i
}
这个做法看起来很强,实际上很容易被卡成O (n^2);
比如说 :s1 :sssssssssssssa, s2 : sssb;
由于并没有利用所有已经匹配过的部分,所以仍然会T;
于是,就有了KMP算法。
p.s. i表示当前在文本串中枚举到的位置,j表示模式串中的;
在s1[ i ] != s2 [ j ]时,将 j 移动到一个在 j 之前的位置k 使得 s2[ 1 ]~s2[ k ] 与 s2[ j-k+1 ]~s2[ j ]完全相同,那么时间复杂度就是O (N+M) 的了;
p.s. 因为 i , j 两个指针最多移动N+M次;
给一个写模板的链接 :https://www.luogu.org/problemnew/show/P3375
贴代码 :
// luogu-judger-enable-o2
// 15owzLy1
//luogu3375_kmp.cpp
//2018 10 02 17:27:50
#include <cstdio>
#include <cstring>
typedef long long ll;
typedef double db;
using namespace std; const int N = ;
int next[N], la, lb;
char a[N], b[N]; template<typename T>inline void read(T &x_) {
x_=;bool f_=;char c_=getchar();
while(c_<''||c_>''){f_|=(c_=='-');c_=getchar();}
while(c_>=''&&c_<=''){x_=(x_<<)+(x_<<)+(c_^);c_=getchar();}
x_=f_?-x_:x_;
} inline void get_next() {
int j=;
for(int i=;i<=lb;i++) {
while(j&&b[j+]!=b[i]) j=next[j];
if(b[j+]==b[i]) ++j;
next[i]=j;
}
} inline void kmp() {
int j=;
for(int i=;i<=la;i++) {
while(j&&a[i]!=b[j+]) j=next[j];
if(b[j+]==a[i]) ++j;
if(j==lb)
printf("%d\n", i-j+);
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("luogu3375_kmp.in","r",stdin);
freopen("luogu3375_kmp.out","w",stdout);
#endif
scanf("\n%s%s", a+, b+); la=strlen(a+), lb=strlen(b+);
get_next();
kmp();
for(int i=;i<=lb;i++) printf("%d ", next[i]);
puts("");
return ;
}
单模式串匹配----浅谈kmp算法的更多相关文章
- 浅谈KMP算法及其next[]数组
KMP算法是众多优秀的模式串匹配算法中较早诞生的一个,也是相对最为人所知的一个. 算法实现简单,运行效率高,时间复杂度为O(n+m)(n和m分别为目标串和模式串的长度) 当字符串长度和字符集大小的比值 ...
- 浅谈KMP算法
一.介绍 烤馍片KMP算法是用来处理字符串匹配问题的.比如说给你两个字符串A,B,问B是不是A的子串? 比如,eg就是aeggx的子串 一般讲字符串A称为主串,用来匹配的B串称为模式串 定义n为字符串 ...
- 【字符串算法3】浅谈KMP算法
[字符串算法1] 字符串Hash(优雅的暴力) [字符串算法2]Manacher算法 [字符串算法3]KMP算法 这里将讲述 [字符串算法3]KMP算法 Part1 理解KMP的精髓和思想 其实KM ...
- 浅谈KMP算法——Chemist
很久以前就学过KMP,不过一直没有深入理解只是背代码,今天总结一下KMP算法来加深印象. 一.KMP算法介绍 KMP解决的问题:给你两个字符串A和B(|A|=n,|B|=m,n>m),询问一个字 ...
- 【文文殿下】浅谈KMP算法next数组与循环节的关系
KMP算法 KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数. KMP算法是利用next数组进行自匹配,然后来进行匹配的. Next数组 Next数 ...
- 浅谈 KMP 算法
最近在复习数据结构,学到了 KMP 算法这一章,似乎又迷糊了,记得第一次学习这个算法时,老师在课堂上讲得唾沫横飞,十分有激情,而我们在下面听得一脸懵比,啥?这是个啥算法?啥玩意?再去看看书,完全听不懂 ...
- 浅谈分词算法(5)基于字的分词方法(bi-LSTM)
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...
- 浅谈分词算法(4)基于字的分词方法(CRF)
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...
- 浅谈分词算法(3)基于字的分词方法(HMM)
目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的 ...
随机推荐
- 2019-04-15 python深浅复制
原作地址:https://www.cnblogs.com/xueli/p/4952063.html 在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,pyth ...
- 理解koa-router 路由一般使用
阅读目录 一:理解koa-router一般的路由 二:理解koa-router命名路由 三:理解koa-router多个中间件使用 四:理解koa-router嵌套路由 五:分割路由文件 回到顶部 一 ...
- 日版iphone5 SB 配合REBELiOS卡贴破解电信3G步骤
1.插入贴膜卡和sim卡:进入“设置—电话—sim卡应用程序”选择CDMA电信解锁: 2.越狱设备,添加cydia.gpplte.com源,安装“6S/6/5S/5C/5电信新补丁”: 3.打卡gpp ...
- React-代码规范
1.方法绑定this,统一写在consrtructor()里. constructor(props){ ... this.handleInputChange=this.handleInputChang ...
- [JLOI2015]骗我呢
[JLOI2015]骗我呢 Tags:题解 作业部落 评论地址 TAG:数学,DP 题意 骗你呢 求满足以下条件的\(n*m\)的矩阵的个数对\(10^9+7\)取模 对于矩阵中的第\(i\)行第\( ...
- docker 小技巧 docker network create br-name 指定IP地址
在某些情况下,使用 docker network create br-name 命令创建网络的时候,会创建一个新的网桥,该网桥的默认IP地址为172.18.0.0\16(或相临的IP地址段) 这个ip ...
- Flask中使用数据库连接池 DBUtils ——(4)
DBUtils是Python的一个用于实现数据库连接池的模块. 此连接池有两种连接模式: 模式一:为每个线程创建一个连接,线程即使调用了close方法,也不会关闭,只是把连接重新放到连接池,供自己线程 ...
- Linux C/C++ 链接选项之静态库--whole-archive,--no-whole-archive和--start-group, --end-group
参照这两篇博客: http://stackoverflow.com/questions/805555/ld-linker-question-the-whole-archive-option http: ...
- Linux operating system basic knowleadge
1.Linux目录系统结构 It makes sense to explore the Linux filesystem from a terminal window. In fact, that ...
- golang数据类型与转换
一.数值型int(默认值 0) int 整数 32位系统占4个字节(-2^31~2^31-1).64位系统占8个字节(-2^63~2^63-1)uint 32位系统占4个字节(0~2^32-1).64 ...