python实现HOG+SVM对CIFAR-10数据集分类(上)
本博客只用于学习,如果有错误的地方,恳请指正,如需转载请注明出处。
看机器学习也是有一段时间了,这两天终于勇敢地踏出了第一步,实现了HOG+SVM对图片分类,具体代码可以在github上下载,https://github.com/subicWang/HOG-SVM-classifer。大家都说HOG+SVM是在行人检测中很合拍的一对。至于为啥,我也讲不清楚。我猜想这么合拍的一对应用在图片分类上效果应该也不错吧,事实证明确实还行,速度挺快,分类正确率还行。我用的数据集是http://www.cs.toronto.edu/~kriz/cifar.html。图片特征HOG的提取过程,本文不做讲解,很多博客也肯定比我讲得清楚。那我就直接粘出我的代码吧,方便需要的人参考。
def getHOGfeat( image,stride = 8, orientations=8, pixels_per_cell=(8, 8),cells_per_block=(2, 2)):
cx, cy = pixels_per_cell
bx, by = cells_per_block
sx, sy = image.shape
n_cellsx = int(np.floor(sx // cx)) # number of cells in x
n_cellsy = int(np.floor(sy // cy)) # number of cells in y
n_blocksx = (n_cellsx - bx) + 1
n_blocksy = (n_cellsy - by) + 1
gx = zeros((sx, sy), dtype=np.double)
gy = zeros((sx, sy), dtype=np.double)
eps = 1e-5
grad = zeros((sx, sy, 2), dtype=np.double)
for i in xrange(1, sx-1):
for j in xrange(1, sy-1):
gx[i, j] = image[i, j-1] - image[i, j+1]
gy[i, j] = image[i+1, j] - image[i-1, j]
grad[i, j, 0] = arctan(gy[i, j] / (gx[i, j] + eps)) * 180 / math.pi
if gx[i, j] < 0:
grad[i, j, 0] += 180
grad[i, j, 0] = (grad[i, j, 0] + 360) % 360
grad[i, j, 1] = sqrt(gy[i, j] ** 2 + gx[i, j] ** 2)
normalised_blocks = np.zeros((n_blocksy, n_blocksx, by * bx * orientations))
for y in xrange(n_blocksy):
for x in xrange(n_blocksx):
block = grad[y*stride:y*stride+16, x*stride:x*stride+16]
hist_block = zeros(32, dtype=double)
eps = 1e-5
for k in xrange(by):
for m in xrange(bx):
cell = block[k*8:(k+1)*8, m*8:(m+1)*8]
hist_cell = zeros(8, dtype=double)
for i in xrange(cy):
for j in xrange(cx):
n = int(cell[i, j, 0] / 45)
hist_cell[n] += cell[i, j, 1]
hist_block[(k * bx + m) * orientations:(k * bx + m + 1) * orientations] = hist_cell[:]
normalised_blocks[y, x, :] = hist_block / np.sqrt(hist_block.sum() ** 2 + eps)
return normalised_blocks.ravel()
熟悉HOG特征提取过程的应该都能看懂,我就不注释了。简单的这样实现当然不能满足我的要求,我一直不能理解为啥这些特征提取算法中像素点的梯度只由水平和垂直的像素决定,周围的其他点就对该点没有作用吗?对此我做了一些实验,在下一篇分享。
2020.4.5 更新:上面是三年前的代码了,当时写的有点不好导致好多人运行报错。今天重新改了一下,现在代码简介了很多,应该没啥问题。https://github.com/SubicLovePython/hog-svm
python实现HOG+SVM对CIFAR-10数据集分类(上)的更多相关文章
- 简单HOG+SVM mnist手写数字分类
使用工具 :VS2013 + OpenCV 3.1 数据集:minst 训练数据:60000张 测试数据:10000张 输出模型:HOG_SVM_DATA.xml 数据准备 train-images- ...
- 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...
- Hog SVM 车辆 行人检测
HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效 ...
- Python实现鸢尾花数据集分类问题——基于skearn的SVM
Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...
- 第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象 ...
- Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes
Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = ...
- Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression
Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题, ...
- 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS
"目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...
- Python开发者最常犯的10个错误
Python是一门简单易学的编程语言,语法简洁而清晰,并且拥有丰富和强大的类库.与其它大多数程序设计语言使用大括号不一样 ,它使用缩进来定义语句块. 在平时的工作中,Python开发者很容易犯一些小错 ...
随机推荐
- 阿里大鱼 阿里云api
阿里短信服务API接入指南及示例 : https://yq.aliyun.com/articles/59928 =========================================== ...
- Angular CLI: 发布到 GitHub Pages
发布 Angular 应用的简单方式是使用 GitHub Pages. 首先需要创建一个 GitHub 账号,随后,为您的项目创建一个仓库.记下 GitHub 中的用户名和项目名称. 例如,我的 Gi ...
- python3 第九章 - 数据类型之Number(数字)
Python 支持三种不同的数字类型: 整型(Int) - 通常被称为是整型或整数,是正或负整数,不带小数点.Python3 整型是没有限制大小的,可以当作 Long 类型使用,所以 Python3 ...
- 获取用户IP地址的三个属性的区别 (HTTP_X_FORWARDED_FOR,HTTP_VIA,REMOTE_ADDR)
一.没有使用代理服务 器的情况: REMOTE_ADDR = 您的 IPHTTP_VIA = 没数值或不显示HTTP_X_FORWARDED_FOR = 没数值或不显示 二.使用透明代理服务器的情 况 ...
- 反编译class文件并重新编译的方法
在没有.java源码的情况下,如果想修改一个.class文件.可以通过以下步骤实现: 修改前的class文件: 一.反编译.class文件成.java文件. 1.可以使用Java Decompiler ...
- 详解spl_autoload_register() 函数(转)
原文地址:http://blog.csdn.net/panpan639944806/article/details/23192267 在了解这个函数之前先来看另一个函数:__autoload. 一._ ...
- zabbix action理解
Maintenance status not in maintenance 谷歌翻译:维护状态不在维护中,中文意思就是监控的设备有problem,触发器报警了,然后执行action {TRIGGE ...
- 基于 HTML5 WebGL 的 3D SCADA 主站系统
这个例子的初衷是模拟服务器与客户端的通信,我把整个需求简化变成了今天的这个例子.3D 的模拟一般需要鹰眼来辅助的,这样找产品以及整个空间的概括会比较明确,在这个例子中我也加了,这篇文章就算是我对这次项 ...
- js函数知识
1.函数基本知识 通过函数可以封装任意条语句,在任何地方调用,js中用function关键字来声明, //基本格式,函数名,传递参数,代码块 function functionName(arg0,ar ...
- display:inline-block下,元素不能在同一水平线及元素间无margin间距的问题解决方法
在前端页面编辑中,常常用于块元素横排列时,我们会用到浮动或者dispaly:inline-block: 浮动虽然好用,效果明显,但是会存在潜在BUG,(暂且不论):那么display:inline-b ...