本博客只用于学习,如果有错误的地方,恳请指正,如需转载请注明出处。

看机器学习也是有一段时间了,这两天终于勇敢地踏出了第一步,实现了HOG+SVM对图片分类,具体代码可以在github上下载,https://github.com/subicWang/HOG-SVM-classifer。大家都说HOG+SVM是在行人检测中很合拍的一对。至于为啥,我也讲不清楚。我猜想这么合拍的一对应用在图片分类上效果应该也不错吧,事实证明确实还行,速度挺快,分类正确率还行。我用的数据集是http://www.cs.toronto.edu/~kriz/cifar.html。图片特征HOG的提取过程,本文不做讲解,很多博客也肯定比我讲得清楚。那我就直接粘出我的代码吧,方便需要的人参考。

def getHOGfeat( image,stride = 8, orientations=8, pixels_per_cell=(8, 8),cells_per_block=(2, 2)):
cx, cy = pixels_per_cell
bx, by = cells_per_block
sx, sy = image.shape
n_cellsx = int(np.floor(sx // cx)) # number of cells in x
n_cellsy = int(np.floor(sy // cy)) # number of cells in y
n_blocksx = (n_cellsx - bx) + 1
n_blocksy = (n_cellsy - by) + 1
gx = zeros((sx, sy), dtype=np.double)
gy = zeros((sx, sy), dtype=np.double)
eps = 1e-5
grad = zeros((sx, sy, 2), dtype=np.double)
for i in xrange(1, sx-1):
for j in xrange(1, sy-1):
gx[i, j] = image[i, j-1] - image[i, j+1]
gy[i, j] = image[i+1, j] - image[i-1, j]
grad[i, j, 0] = arctan(gy[i, j] / (gx[i, j] + eps)) * 180 / math.pi
if gx[i, j] < 0:
grad[i, j, 0] += 180
grad[i, j, 0] = (grad[i, j, 0] + 360) % 360
grad[i, j, 1] = sqrt(gy[i, j] ** 2 + gx[i, j] ** 2)
normalised_blocks = np.zeros((n_blocksy, n_blocksx, by * bx * orientations))
for y in xrange(n_blocksy):
for x in xrange(n_blocksx):
block = grad[y*stride:y*stride+16, x*stride:x*stride+16]
hist_block = zeros(32, dtype=double)
eps = 1e-5
for k in xrange(by):
for m in xrange(bx):
cell = block[k*8:(k+1)*8, m*8:(m+1)*8]
hist_cell = zeros(8, dtype=double)
for i in xrange(cy):
for j in xrange(cx):
n = int(cell[i, j, 0] / 45)
hist_cell[n] += cell[i, j, 1]
hist_block[(k * bx + m) * orientations:(k * bx + m + 1) * orientations] = hist_cell[:]
normalised_blocks[y, x, :] = hist_block / np.sqrt(hist_block.sum() ** 2 + eps)
return normalised_blocks.ravel()

 熟悉HOG特征提取过程的应该都能看懂,我就不注释了。简单的这样实现当然不能满足我的要求,我一直不能理解为啥这些特征提取算法中像素点的梯度只由水平和垂直的像素决定,周围的其他点就对该点没有作用吗?对此我做了一些实验,在下一篇分享。

2020.4.5 更新:上面是三年前的代码了,当时写的有点不好导致好多人运行报错。今天重新改了一下,现在代码简介了很多,应该没啥问题。https://github.com/SubicLovePython/hog-svm

python实现HOG+SVM对CIFAR-10数据集分类(上)的更多相关文章

  1. 简单HOG+SVM mnist手写数字分类

    使用工具 :VS2013 + OpenCV 3.1 数据集:minst 训练数据:60000张 测试数据:10000张 输出模型:HOG_SVM_DATA.xml 数据准备 train-images- ...

  2. 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow

    原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...

  3. Hog SVM 车辆 行人检测

    HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效 ...

  4. Python实现鸢尾花数据集分类问题——基于skearn的SVM

    Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...

  5. 第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)

    其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象 ...

  6. Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes

    Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = ...

  7. Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression

    Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题, ...

  8. 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS

    "目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...

  9. Python开发者最常犯的10个错误

    Python是一门简单易学的编程语言,语法简洁而清晰,并且拥有丰富和强大的类库.与其它大多数程序设计语言使用大括号不一样 ,它使用缩进来定义语句块. 在平时的工作中,Python开发者很容易犯一些小错 ...

随机推荐

  1. Linux初识

    在这篇文章中你讲看到如下内容: 计算机的组成及功能: Linux发行版之间的区别和联系: Linux发行版的基础目录及功用规定: Linux系统设计的哲学思想: Linux系统上获取命令帮助,及man ...

  2. 第一次写Web API接口

    API是什么?只知道是网络接口,具体怎么写?不会!如何调用?不会!那怎么办? 第一次的经历~~ 需求:为其他项目提供一个接口 功能:为项目提供询盘信息和商家信息,格式为Json字符串 拿过来,就开始做 ...

  3. Android Handler简单示例

    package com.firstapp.foo.firstapp; import android.os.Handler; import android.os.Message; import andr ...

  4. XGBoost参数

    XGBoost参数 转自http://blog.csdn.net/zc02051126/article/details/46711047 在运行XGboost之前,必须设置三种类型成熟:general ...

  5. html5离线应用详摘

    html5离线应用详摘 在html文件里配置如下: <html manifest=”name.manifest”> 在name.manifest文件里配置如下: CACHE MANIFES ...

  6. WEB系统开发方向

    1. UI框架:要可以结合jquery+自定义服务器控件开发一套UI框架: 2.WEB报表设计器:用js开发一套可以自定义报表设计器: 3.WEB自定义表单+工作流设计器: 4.WEB打印组件: 5. ...

  7. Java程序员面试题集(86-115)

    摘 要:下面的内容包括Struts 2和Hibernate的常见面试题,虽然Struts 2在2013年6月曝出高危漏洞后已经显得江河日下,而Spring MVC的异军突起更加加速了Struts 2的 ...

  8. Android学习笔记之View(二)

    View加载的流程之测量:rootView调用measure()→onMeasure(): measure()是final方法,表明Android不想让开发者去修改measure的框架,开发者可以on ...

  9. Java-NIO(六):Channel聚集(gather)写入与分散(scatter)读取

    Channel聚集(gather)写入: 聚集写入( Gathering Writes)是指将多个 Buffer 中的数据“聚集”到 Channel. 特别注意:按照缓冲区的顺序,写入 positio ...

  10. WordPress &lt;= 4.6 命令执行漏洞(PHPMailer)复现分析

    漏洞信息 WordPress 是一种使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设属于自己的网站.也可以把 WordPress 当作一个内容管理系统(C ...