题意:在n*m的网格中,某个物体初始置于点(x,y),每一步行动都会等概率地停留在原地/往左/往右/往下走,求走到最后一行的的步数的数学期望,其中n,m<1000

lyd告诉我们这种题目要倒推处理.设\(f[i][j]\)为(i,j)到(n,k)的步数期望,k为任意数

那么对于各种边界有如下情况

\(f[n][j]=0\)

\(f[i][1]=\frac{1}{3}f[i][1]+\frac{1}{3}f[i][2]+\frac{1}{3}f[i+1][1]+1\)

\(f[i][m]=\frac{1}{3}f[i][m]+\frac{1}{3}f[i][m-1]+\frac{1}{3}f[i+1][m]+1\)

\(f[i][j]=\frac{1}{4}f[i][j]+\frac{1}{4}f[i][j-1]+\frac{1}{4}f[i][j+1]+\frac{1}{4}f[i+1][j]+1\)

式子2~4需要满足\(i<n\),式子4需要满足\(1<j<m\)

这种式子存在后效性,一种可行的方法是使用高斯消元处理,详见挑战程序设计竞赛P289 Random Walk

但以上方法仅适用于n*m<300左右的式子,这种需要手动消元才能在\(O(n*m)\)的时间内处理(其实硬上魔改应该也没问题?

首先要确认的是行内存在后效性,但行间无后效性,如果逆推的话就意味着在求解\(f[i][j]\)的时候\(f[i+1][j]\)是已知的,可作为常数处理

我们把常数项和未知数项分离

\(f[i][1]=(3+f[i+1][1])/2+\frac{1}{2}f[i][2]\)

\(f[i][1]=A+B*f[i][2],A=(3+f[i+1][1])/2,B=1/2\)

\(f[i][2]=(4+f[i][3]+f[i][1]+f[i+1][2])/3=(4+f[i][3]+A+B*f[i][2]+f[i+1][2])/3=(4+f[i][3]+A+f[i+1][2])/(3-B)\)

\(f[i][2]=(4+A+f[i+1][2])/(3-B)+\frac{1}{3-B}f[i][3]\)

\(f[i][2]=A'+B'*f[i][3],A'=(4+A+f[i+1][2])/(3-B),B'=1/(3-B)\)

以此类推直到

\(f[i][m-1]=A^{(m-1)}+B^{(m-1)}f[i][m]\)

又\(f[i][m]=(3+A^{(m-1)}+f[i+1][m])/(2-B^{(m-1)})\),该项可以初始化

通过逆推计算就可以得出全部项,而\(f[x][y]\)就是答案

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iter(i,j) for(int i=0;i<(j).size();i++)
#define print(a) printf("%lld",(ll)a)
#define println(a) printf("%lld\n",(ll)a)
#define printbk(a) printf("%lld ",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 1e3+11;
const int oo = 0x3f3f3f3f;
typedef long long ll;
const double EPS = 1e-8;
typedef vector<double> vec;
typedef vector<vec> mat;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m;
double a[MAXN],b[MAXN],f[MAXN][MAXN];
int main(){
while(cin>>n>>m){
int x=read();
int y=read();
if(m==1){
printf("%.4lf\n",(double)(n-x)*2.0);
continue;
}
rep(i,0,m) f[n][i]=0;
rrep(i,n-1,1){
a[1]=(double)(3.0+f[i+1][1])/2.0;b[1]=0.5;
rep(j,2,m-1){
a[j]=(double)(4.0+a[j-1]+f[i+1][j])/(3.0-b[j-1]);
b[j]=(double)1.0/(3.0-b[j-1]);
}
f[i][m]=(double)(3.0+a[m-1]+f[i+1][m])/(2.0-b[m-1]);
rrep(j,m-1,1){
f[i][j]=a[j]+b[j]*f[i][j+1];
}
}
printf("%.10lf\n",f[x][y]);
}
return 0;
}

Codeforces - 24D 有后效性的DP处理的更多相关文章

  1. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  2. CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)

    pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...

  3. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  4. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  5. Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性

    https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...

  6. poj 2228 Naptime(DP的后效性处理)

    \(Naptime\) \(solution:\) 这道题不做多讲,它和很多区间DP的套路一致,但是这一道题它不允许断环成链,会超时.但是我们发现如果这只奶牛跨夜休息那么它在不跨夜的二十四个小时里一定 ...

  7. Cogs 376. [IOI2002]任务安排(后效性DP)

    [IOI2002]任务安排 ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比 时间限制:1 s 内存限制:128 MB N个任务排成一个序列在一台机器上等待完成(顺序不得改变) ...

  8. CF24D Broken robot 后效性DP

    这题咕了好久..... 设$f[i][j]$表示从$(i,j)$到最后一行的期望步数: 则有 $ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$ $ ...

  9. Makoto and a Blackboard CodeForces - 1097D (积性函数dp)

    大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值. 设$n$经过$k$次操作后期望为$f_k(n)$. 就有$f_0(n)=n$, $f_k(n)=\frac ...

随机推荐

  1. 彻底修改Eclipse的默认编码

    引用各位前辈经验得到彻底修改eclipse默认编码的方法. 单在eclipse里设置编码方式非常复杂且容易遗漏,全部修改后,有些代码生成模板内的${encode}变量仍为原编码方案,经过查阅许多资料得 ...

  2. 在VS2010中使用Git【图文】(转)

    出处:http://www.cnblogs.com/oec2003/archive/2012/11/13/2768860.html 在之前的一片博客<Windows 下使用Git管理Github ...

  3. Qt之QML开发常用知识

    小技巧: 1. QML的内部逻辑可以直接调试 2. ctrl+ alt + space,在写QML时,可以直接调出工具条 3. 属性以小写字母开发 4. 属性改变事件,基本都是on+Property+ ...

  4. Spring框架总结(二)

    开发一个简单的Spring项目: 一.开发环境搭建: 1.引入源码jar :3.0以前的版本含有依赖jar包,3.0以后只有spring的核心jar 包 core的jar包 commons-loggi ...

  5. git的使用和一些命令

    1. https://github.com/ 在这个网站注册一个帐号. http://gitref.org/zh/creating/ 待会写.. [命令] a)

  6. static 和final

    1.static       static关键字可以用来修饰类的变量,方法和内部类.static是静态的意思,也是全局的意思,它定义的东西属于全局,与类相关,不与具体实例相关.就是说它调用的时候,只是 ...

  7. 编写高质量代码改善C#程序的157个建议——建议148:不重复代码

    建议148:不重复代码 如果发现重复的代码,则意味着我们需要整顿一下,在继续前进. 重复的代码让我们的软件行为不一致.举例来说,如果存在两处相同的加密代码.结果在某一天,我们发现加密代码有个小Bug, ...

  8. [Selenium With C#基础教程] Lesson-04 按钮

    作者:Surpassme 来源:http://www.jianshu.com/p/83d7416c4b7d 声明:本文为原创文章,如需转载请在文章页面明显位置给出原文链接,谢谢. Button通常有两 ...

  9. 关于Markdown格式转PDF格式

    Markdown转PDF格式 个人使用的Markdown编辑平台:有道云笔记网页版 当我们编辑好自己的随笔以后,在网页的[客户端下载]下面有一个[更多]的圆形图标选项,点击后在菜单中有一处[打印]选项 ...

  10. 学习做爬虫-vs2017

    最近新装了vs2017,安装过程发生了很大的变化,操作变的更加容易了. 下载vs安装程序进行安装.更新界面如图所示,我选择了安装免费个人版(这个是已安装的更新界面,和安装界面差不多) 如图所示,这样的 ...