1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3307  Solved: 2075
[Submit][Status][Discuss]

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

HINT

 

Source

 

[Submit][Status][Discuss]

HOME Back

时隔多年(?)终于搞懂了第一道容斥题QwQ!!特此纪念。

首先我们可以做一次完全背包,每种硬币无限制地用,统计出方案数。然后我们就会发现多计入了一些不合法的情况,就是第$i$种硬币用了超出$d[i]$的数量的方案数。我们要统计所有不合法的情况,就是第一种硬币不合法的方案数+第二种硬币不合法的方案数+第三种硬币+第四种硬币-第一和第二-第二和第三...这就是奇加偶减的容斥!而我们是用所有情况减去不合法的情况,在$dfs$容斥中反过来就可以了。

【注意】$ans$最开始是0,因为在容斥中就会走到每一种硬币不合法的情况都不减去的情况,这时就是所有情况的总数。

代码中的$k$表示的就是当前减去了几个物品不合法的数量,奇加偶减。

$sum$是当前剩余需要填满的钱数,那么$f[sum-(d[i]+1)*c[i]]$表示的是第$i$种钱币用了$d[i]+1$填满$sum$的方案数,即这个硬币使用不合法的方案数。(强制使第$i$种硬币不合法

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std; int c[], tot, d[];
ll ans, f[]; void dfs ( int dep, int k, int sum ) {
if ( sum < ) return ;
if ( dep == ) {
if ( k & ) ans -= f[sum];
else ans += f[sum];
return ;
}
dfs ( dep + , k + , sum - ( d[dep] + ) * c[dep] );
dfs ( dep + , k, sum );
} int main ( ) {
for ( int i = ; i <= ; i ++ ) scanf ( "%d", &c[i] );
scanf ( "%d", &tot );
f[] = ;
for ( int i = ; i <= ; i ++ )
for ( int j = c[i]; j <= ; j ++ )
f[j] += f[j-c[i]];
while ( tot -- ) {
for ( int i = ; i <= ; i ++ ) scanf ( "%d", &d[i] );
int s;
scanf ( "%d", &s );
ans = ;
dfs ( , , s );
printf ( "%lld\n", ans );
}
return ;
}

【BZOJ】1042: [HAOI2008]硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  6. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  7. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  8. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

  10. ●BZOJ 1042 [HAOI2008]硬币购物

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题解: 容斥原理,dp预处理首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有 ...

随机推荐

  1. 宝塔Linux面板新手安装教程【转】

    一.使用远程连接软件 (如 Putty.XShell) 连接你的Linux服务器,本教程以 Putty 为例. 1.动 Putty.exe 程序,进入 Putty 主界面. 2.在 Host Name ...

  2. JavaScript 去字符串空格

    JavaScript 去字符串空格 (利用正则) # str为要去除空格的字符串: # 去除所有空格: str = str.replace(/\s+/g,""); # 去除两头空格 ...

  3. Ubuntu 下查看已安装的软件

    Ubuntu 下如何查看已安装的软件 1.查看安装的所有软件 dpkg -l 例如: dpkg -l | grep ftp 2.查看软件安装的路径 dpkg -L | grep ftp 也可以用 wh ...

  4. Codeforces 375D - Tree and Queries(dfs序+莫队)

    题目链接:http://codeforces.com/contest/351/problem/D 题目大意:n个数,col[i]对应第i个数的颜色,并给你他们之间的树形关系(以1为根),有m次询问,每 ...

  5. 深度学习方法(九):自然语言处理中的Attention Model注意力模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.NET/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 上一篇博文深度学习方法(八):Enc ...

  6. 洛谷 P2945 [USACO09MAR]沙堡Sand Castle 题解

    题目传送门 大概思路就是把这两个数组排序.在扫描一次,判断大小,累加ans. #include<bits/stdc++.h> using namespace std; int x,y,z; ...

  7. 安装 jupyter notebook 出现 ModuleNotFoundError: No module named 'markupsafe._compat' 错误

    使用 python -m pip install jupyter 安装完成 jupyter notebook 之后,在命令行界面输入 "jupyter notebook "指令打开 ...

  8. linux的文件隐藏属性 chattr lsattr

    <鸟哥的Linux私房菜 基础学习篇(第三版)> 7.4.2 读书笔记 显然,这里要说的并不是rwx那9个权限,而是要聊chattr和lsattr这两个命令.这两个命令在只能在Ext2/E ...

  9. C语言的第一天

    代码根本C语言(我不知道这句话,严不严谨) 2019年4月30日(day01) 软件Code::blocks #include <stdio.h> //导入标准的io库 #include ...

  10. bzoj 2115 线性基

    这种路径异或问题,可以转换为一条路径和若干个环的线性组合,然后就能用线性基搞了. 复习了一波线性基. #include<bits/stdc++.h> #define LL long lon ...