基于baseline、svd和stochastic gradient descent的个性化推荐系统
koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长。考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集。
变量介绍

部分变量介绍可以参看《基于baseline和stochastic gradient descent的个性化推荐系统》
文章中,将介绍两种方法实现的简易个性化推荐系统,用RMSE评价标准,对比这两个方法的实验结果。
(1) svd + stochstic gradient descent 方法来实现系统。
(2) baseline + svd + stochastic gradient descent 方法来实现系统。
注:

方法1: svd + stochastic gradient descent
svd:

cost function:

梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)

具体代码实现:
'''''
Created on Dec 13, 2012 @Author: Dennis Wu
@E-mail: hansel.zh@gmail.com
@Homepage: http://blog.csdn.net/wuzh670 Data set download from : http://www.grouplens.org/system/files/ml-100k.zip
''' from operator import itemgetter, attrgetter
from math import sqrt
import random def load_data(): train = {}
test = {}
filename_train = 'data/ua.base'
filename_test = 'data/ua.test' for line in open(filename_train):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
train.setdefault(userId,{})
train[userId][itemId] = float(rating) for line in open(filename_test):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
test.setdefault(userId,{})
test[userId][itemId] = float(rating) return train, test def calMean(train):
stat = 0
num = 0
for u in train.keys():
for i in train[u].keys():
stat += train[u][i]
num += 1
mean = stat*1.0/num
return mean def initialFeature(feature, userNum, movieNum): random.seed(0)
user_feature = {}
item_feature = {}
i = 1
while i < (userNum+1):
si = str(i)
user_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
user_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1 i = 1
while i < (movieNum+1):
si = str(i)
item_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
item_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1
return user_feature, item_feature def svd(train, test, userNum, movieNum, feature, user_feature, item_feature): gama = 0.02
lamda = 0.3
slowRate = 0.99
step = 0
preRmse = 1000000000.0
nowRmse = 0.0 while step < 100:
rmse = 0.0
n = 0
for u in train.keys():
for i in train[u].keys():
pui = 0
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = train[u][i] - pui
rmse += pow(eui,2)
n += 1
k = 1
while k < (feature+1):
sk = str(k)
user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk])
item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda**item_feature[i][sk])
k += 1 nowRmse = sqrt(rmse*1.0/n)
print 'step: %d Rmse: %s' % ((step+1), nowRmse)
if (nowRmse < preRmse):
preRmse = nowRmse gama *= slowRate
step += 1 return user_feature, item_feature def calRmse(test, user_feature, item_feature, feature): rmse = 0.0
n = 0
for u in test.keys():
for i in test[u].keys():
pui = 0
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = pui - test[u][i]
rmse += pow(eui,2)
n += 1
rmse = sqrt(rmse*1.0 / n)
return rmse; if __name__ == "__main__": # load data
train, test = load_data()
print 'load data success' # initial user and item feature, respectly
user_feature, item_feature = initialFeature(100, 943, 1682)
print 'initial user and item feature, respectly success' # baseline + svd + stochastic gradient descent
user_feature, item_feature = svd(train, test, 943, 1682, 100, user_feature, item_feature)
print 'svd + stochastic gradient descent success' # compute the rmse of test set
print 'the Rmse of test test is: %s' % calRmse(test, user_feature, item_feature, 100)
方法2:baseline + svd + stochastic gradient descent
baseline + svd:

object function:

梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)

方法2: 具体代码实现
'''''
Created on Dec 13, 2012 @Author: Dennis Wu
@E-mail: hansel.zh@gmail.com
@Homepage: http://blog.csdn.net/wuzh670 Data set download from : http://www.grouplens.org/system/files/ml-100k.zip
''' from operator import itemgetter, attrgetter
from math import sqrt
import random def load_data(): train = {}
test = {}
filename_train = 'data/ua.base'
filename_test = 'data/ua.test' for line in open(filename_train):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
train.setdefault(userId,{})
train[userId][itemId] = float(rating) for line in open(filename_test):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
test.setdefault(userId,{})
test[userId][itemId] = float(rating) return train, test def calMean(train):
stat = 0
num = 0
for u in train.keys():
for i in train[u].keys():
stat += train[u][i]
num += 1
mean = stat*1.0/num
return mean def initialBias(train, userNum, movieNum, mean): bu = {}
bi = {}
biNum = {}
buNum = {} u = 1
while u < (userNum+1):
su = str(u)
for i in train[su].keys():
bi.setdefault(i,0)
biNum.setdefault(i,0)
bi[i] += (train[su][i] - mean)
biNum[i] += 1
u += 1 i = 1
while i < (movieNum+1):
si = str(i)
biNum.setdefault(si,0)
if biNum[si] >= 1:
bi[si] = bi[si]*1.0/(biNum[si]+25)
else:
bi[si] = 0.0
i += 1 u = 1
while u < (userNum+1):
su = str(u)
for i in train[su].keys():
bu.setdefault(su,0)
buNum.setdefault(su,0)
bu[su] += (train[su][i] - mean - bi[i])
buNum[su] += 1
u += 1 u = 1
while u < (userNum+1):
su = str(u)
buNum.setdefault(su,0)
if buNum[su] >= 1:
bu[su] = bu[su]*1.0/(buNum[su]+10)
else:
bu[su] = 0.0
u += 1 return bu,bi def initialFeature(feature, userNum, movieNum): random.seed(0)
user_feature = {}
item_feature = {}
i = 1
while i < (userNum+1):
si = str(i)
user_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
user_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1 i = 1
while i < (movieNum+1):
si = str(i)
item_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
item_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1
return user_feature, item_feature def svd(train, test, mean, userNum, movieNum, feature, user_feature, item_feature, bu, bi): gama = 0.02
lamda = 0.3
slowRate = 0.99
step = 0
preRmse = 1000000000.0
nowRmse = 0.0 while step < 100:
rmse = 0.0
n = 0
for u in train.keys():
for i in train[u].keys():
pui = 1.0 * (mean + bu[u] + bi[i])
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = train[u][i] - pui
rmse += pow(eui,2)
n += 1
bu[u] += gama * (eui - lamda * bu[u])
bi[i] += gama * (eui - lamda * bi[i])
k = 1
while k < (feature+1):
sk = str(k)
user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk])
item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda*item_feature[i][sk])
k += 1 nowRmse = sqrt(rmse*1.0/n)
print 'step: %d Rmse: %s' % ((step+1), nowRmse)
if (nowRmse < preRmse):
preRmse = nowRmse gama *= slowRate
step += 1
return user_feature, item_feature, bu, bi def calRmse(test, bu, bi, user_feature, item_feature, mean, feature): rmse = 0.0
n = 0
for u in test.keys():
for i in test[u].keys():
pui = 1.0 * (mean + bu[u] + bi[i])
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = pui - test[u][i]
rmse += pow(eui,2)
n += 1
rmse = sqrt(rmse*1.0 / n)
return rmse; if __name__ == "__main__": # load data
train, test = load_data()
print 'load data success' # Calculate overall mean rating
mean = calMean(train)
print 'Calculate overall mean rating success' # initial user and item Bias, respectly
bu, bi = initialBias(train, 943, 1682, mean)
print 'initial user and item Bias, respectly success' # initial user and item feature, respectly
user_feature, item_feature = initialFeature(100, 943, 1682)
print 'initial user and item feature, respectly success' # baseline + svd + stochastic gradient descent
user_feature, item_feature, bu, bi = svd(train, test, mean, 943, 1682, 100, user_feature, item_feature, bu, bi)
print 'baseline + svd + stochastic gradient descent success' # compute the rmse of test set
print 'the Rmse of test test is: %s' % calRmse(test, bu, bi, user_feature, item_feature, mean, 100)
实验参数设置:

(gama = 0.02 lamda =0.3)
feature = 100 maxstep = 100 slowRate = 0.99(随着迭代次数增加,梯度下降幅度越来越小)
方法1结果:Rmse of test set : 1.00422938926
方法2结果:Rmse of test set : 0.963661477881
REFERENCES
1.Y. Koren. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model. Proc. 14th ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining (KDD’08), pp. 426–434, 2008.
2. Y.Koren. The BellKor Solution to the Netflix Grand Prize 2009
基于baseline、svd和stochastic gradient descent的个性化推荐系统的更多相关文章
- 基于baseline和stochastic gradient descent的个性化推荐系统
文章主要介绍的是koren 08年发的论文[1], 2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...
- FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?
FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...
- Stochastic Gradient Descent
一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...
- Stochastic Gradient Descent 随机梯度下降法-R实现
随机梯度下降法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...
- 机器学习-随机梯度下降(Stochastic gradient descent)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...
- Stochastic Gradient Descent收敛判断及收敛速度的控制
要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下 ...
- Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)
Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯 ...
- 随机梯度下降法(Stochastic gradient descent, SGD)
BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小) Mold 一直在更新 SGD(Stochastic gradientdescent)随机 ...
随机推荐
- 5、Docker数据管理
为了能够存储持久化数据以及共享容器间的数据,Docker提出了Volume的概念.让我们通过类似mount的方式将宿主机的文件或者目录挂载到容器中. 在容器中管理数据主要有两种方式: 数据卷(Data ...
- cpu子系统(优化)
如果业务已经在线上,你要优化,第一步如何做 首先进行服务器数据采集,和性能监测分析 一:使用cacti,nagios,zabbix 等监控工具 二:使用linux 自带的一些监控指令:vmstat,i ...
- leetcode-240-搜索二维矩阵②
题目描述: 最佳方法:O(m+n) O(1) class Solution: def searchMatrix(self, matrix, target): if not matrix : retur ...
- leetcode-40-组合总和②
题目描述: 方法一:回溯 class Solution: def combinationSum2(self, candidates: List[int], target: int) -> Lis ...
- 关于Qt5(1)-- 两个窗口互相切换的例子
<QT Creator快速入门>这本书有一章介绍model和modeless的概念时,用到了两个窗口互相切换的例子.但是原文对该例子的说明非常模糊不清,现整理如下. 1,要求:登陆界面.主 ...
- HTML 5 基础
HTML 参考手册 HTML 5 视频 controls 属性供添加播放.暂停和音量控件. <video src="movie.ogg" width="320&qu ...
- Orika JavaBean映射工具探秘
Orika是一个简单.快速的JavaBean拷贝框架,Orika使用字节代码生成来创建具有最小开销的快速映射器. 关于: 作为开发人员,我们必须为业务问题提供解决方案,我们希望利用我们的时间来做真正重 ...
- Eclipse中servlet简易模版
package ${enclosing_package}; import java.io.IOException; import javax.servlet.ServletException; imp ...
- java反射获取和设置实体类的属性值 递归所有父类
最近做一个通用数据操作接口,需要动态获取和设置实体类的属性值,为了通用实体做了多重继承,开始网上找到代码都不支持父类操作,只能自己搞一个工具类了,此工具类可以设置和获取所有父类属性,代码贴下面拿走不谢 ...
- 有关axios的request与response拦截
// http request 拦截器 axios.interceptors.request.use( config => { var token = localStorage.getItem( ...