import numpy as np
import matplotlib.pyplot as plt from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
from sklearn.model_selection import validation_curve #模型选择验证曲线validation_curve模型
def test_validation_curve():
'''
测试 validation_curve 的用法 。验证对于 LinearSVC 分类器 , C 参数对于预测准确率的影响
'''
### 加载数据
digits = load_digits()
X,y=digits.data,digits.target
#### 获取验证曲线 ######
param_name="C"
param_range = np.logspace(-2, 2)
train_scores, test_scores = validation_curve(LinearSVC(), X, y, param_name=param_name,param_range=param_range,cv=10, scoring="accuracy")
###### 对每个 C ,获取 10 折交叉上的预测得分上的均值和方差 #####
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
####### 绘图 ######
fig=plt.figure()
ax=fig.add_subplot(1,1,1) ax.semilogx(param_range, train_scores_mean, label="Training Accuracy", color="r")
ax.fill_between(param_range, train_scores_mean - train_scores_std,train_scores_mean + train_scores_std, alpha=0.2, color="r")
ax.semilogx(param_range, test_scores_mean, label="Testing Accuracy", color="g")
ax.fill_between(param_range, test_scores_mean - test_scores_std,test_scores_mean + test_scores_std, alpha=0.2, color="g") ax.set_title("Validation Curve with LinearSVC")
ax.set_xlabel("C")
ax.set_ylabel("Score")
ax.set_ylim(0,1.1)
ax.legend(loc='best')
plt.show() #调用test_validation_curve()
test_validation_curve()

吴裕雄 python 机器学习——模型选择验证曲线validation_curve模型的更多相关文章

  1. 吴裕雄 python 机器学习——数据预处理包裹式特征选取模型

    from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_select ...

  2. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  4. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  5. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

  6. 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

    from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...

  7. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. logging日志模块_python

    一.logging模块 1.功能 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设 ...

  2. Shashlik Cooking

    Long story short, shashlik is Miroslav's favorite food. Shashlik is prepared on several skewers simu ...

  3. EF中的持久化场景

    使用EF实现实体持久化(保存)到数据库有两种情况:在线场景和离线场景. 1.在线场景 在线场景中,context是上下文实例,读写都通过一个context. 这种方案适用于连接本地数据库或同一网络上的 ...

  4. SpringBoot开发快速入门

    SpringBoot开发快速入门 目录 一.Spring Boot 入门 1.Spring Boot 简介 2.微服务 3.环境准备 1.maven设置: 2.IDEA设置 4.Spring Boot ...

  5. Ubuntu, 更新Sourses.list

    1.备份原文件 sudo cp /etc/apt/sources.list /etc/apt/sources_list.bak 2.加载文件 vim:vim sourses.list ubuntu d ...

  6. python中乱码怎么由来与解决方法

    前言曾几何时 Python 中文乱码的问题困扰了我很多很多年,每次出现中文乱码都要去网上搜索答案,虽然解决了当时遇到的问题但下次出现乱码的时候又会懵逼,究其原因还是知其然不知其所以然.现在有的小伙伴为 ...

  7. 结合Thread Ninja明确与处理异步协程中的异常

    Thread Ninja说明: Thread Ninja - Multithread Coroutine Requires Unity 3.4.0 or higher. A simple script ...

  8. 新建表需要原表的数据,mysql 如何把查询到的结果插入到新表中

    项目运用情景:新建表需要原表的数据 1. 如果两张张表(导出表和目标表)的字段一致,并且希望插入全部数据,可以用这种方法: INSERT INTO  目标表  SELECT  * FROM  来源表 ...

  9. JS高级---函数作为参数使用

    函数作为参数使用 var arr = [1, 100, 20, 200, 40, 50, 120, 10]; //排序 arr.sort(); console.log(arr); 排序---函数作为参 ...

  10. 第四十七篇 入门机器学习——分类的准确性(Accuracy)

    No.1. 通常情况下,直接将训练得到的模型应用于真实环境中,可能会存在很多问题 No.2. 比较好的解决方法是,将原始数据中的大部分用于训练数据,而留出少部分数据用于测试,即,将数据集切分成训练数据 ...