为什么要用broadcast?

If you have huge array that is accessed from Spark Closures, for example some reference data, this array will be shipped to each spark node with closure. For example if you have 10 nodes cluster with 100 partitions (10 partitions per node), this Array will be distributed at least 100 times (10 times to each node).

If you use broadcast it will be distributed once per node using efficient p2p protocol.

val array: Array[Int] = ??? // some huge array
val broadcasted = sc.broadcast(array)

And some RDD

val rdd: RDD[Int] = ???

In this case array will be shipped with closure each time

rdd.map(i => array.contains(i))

and with broadcast you'll get huge performance benefit

rdd.map(i => broadcasted.value.contains(i))

变量不broadcast仅仅影响的是效率吗?

理解闭包
      Spark中理解起来比较困难的一点是当代码在集群上运行时变量和方法的生命周期和作用域(scope)。当作用于RDD上的操作修改了超出它们作用域范围的变量时,会引起一些混淆。为了说明这个问题,使用下面的例子。该例中使用foreach(),对counter(计数器)进行增加,相同的问题也会发生在其他操作中。

 

例子

下面的例子在以本地模式运行(--master = local[n]) 和将它部署到集群中 (例如通过 spark-submit 提交到 YARN)对比发现会产生不同的结果。

1
2
3
4
5
 
var counter = 0
var rdd = sc.parallelize(data)
// 错误,请不要这样做!!
rdd.foreach(x => counter += x)
println("Counter value: " + counter)

本地模式 vs. 集群模式

这里主要的挑战是上面代码的行为是有歧义的。以本地模式运行在单个JVM上,上面的代码会将RDD中的值进行累加,并且将它存储到counter中。这是因为RDD和变量counter在driver节点的相同内存空间中。
      然而,以集群模式运行时,会更加复杂,上面的代码的结果也许不会如我们预期的那样。当执行一个作业(job)时,Spark会将RDD分成多个任务(task)--每一个任务都会由一个executor来执行。在执行之前,Spark会计算闭包(closure)。闭包是对executors可见的那部分变量和方法,executors会用闭包来执行RDD上的计算(在这个例子中,闭包是foreach())。这个闭包是被序列化的,并且发送给每个executor。在本地模式中,只有一个executor,所以共享相同的闭包。然而,在集群模式中,就不是这样了。executors会运行在各自的worker节点中,每个executor都有闭包的一个复本。
      发送给每个executor的闭包中的变量其实也是复本。每个foreach函数中引用的counter不再是driver节点上的counter。当然,在driver节点的内存中仍然存在这一个counter,但是这个counter对于executors来说是不可见的。executors只能看到自己的闭包中的复本。这样,counter最后的值仍旧是0,因为所有在counter的操作只引用了序列化闭包中的值。
      为了在这样的场景中,确保这些行为正确,应该使用累加变量(Accumulator)。在集群中跨节点工作时,Spark中的累加变量提供了一种安全的机制来更新变量。所以可变的全局状态应该使用累加变量来定义。

所以上面的例子可以这样写:

1
2
3
4
5
 
// counter现在是累加变量
var counter = sc.accumulator(0)
var rdd = sc.parallelize(data)
rdd.foreach(x => counter += x)
println("Counter value: " + counter)

spark 为什么要用broadcast[转]的更多相关文章

  1. 【Spark调优】Broadcast广播变量

    [业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广 ...

  2. Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)

    背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新 ...

  3. Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)

    本次此时是在SPARK2,3 structured streaming下测试,不过这种方案,在spark2.2 structured streaming下应该也可行(请自行测试).以下是我测试结果: ...

  4. 【Spark Java API】broadcast、accumulator

    转载自:http://www.jianshu.com/p/082ef79c63c1 broadcast 官方文档描述: Broadcast a read-only variable to the cl ...

  5. Spark2.3(四十三):Spark Broadcast总结

    为什么要使用广播(broadcast)变量? Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量.进一步解释: 如果exe ...

  6. spark 源码分析之十四 -- broadcast 是如何实现的?

    本篇文章主要剖析broadcast 的实现机制. BroadcastManager初始化 BroadcastManager初始化方法源码如下: TorrentBroadcastFactory的继承关系 ...

  7. Spark性能调优:广播大变量broadcast

    Spark性能调优:广播大变量broadcast 原文链接:https://blog.csdn.net/leen0304/article/details/78720838 概要 有时在开发过程中,会遇 ...

  8. 【转载】 Spark性能优化指南——基础篇

    转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能 ...

  9. 【转】Spark性能优化指南——基础篇

    http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a ...

随机推荐

  1. Maven项目的目录问题

    创建maven项目,使不使用骨架都行. java项目的目录 src/main  项目 java存放.java文件,resources存放静态资源.配置文件.映射文件. 静态资源一般在resources ...

  2. Linux服务器配置GPU版本的pytorch Torchvision TensorFlow

    最近在Linux服务器上配置项目,项目需要使用GPU版本的pytorch和TensorFlow,而且该项目内会同时使用TensorFlow的GPU和CPU. 在服务器上装环境,如果重新开始,就需要下载 ...

  3. 使用Teigha.net读取CAD的常用功能模块

    Teigha中实体旋转 代码: using (var trans = database.TransactionManager.StartTransaction()) { Entity ent = tr ...

  4. 2.Android网络编程-web介绍以及Tomcat安装使用

    1.CS和BS CS:Client/Server 客户端和服务器,这种软件往往需要安装.比如QQ.迅雷.播放器. 优点 :  可以减轻服务器端压力,将部分代码写到客户端,并且界面很美观. 缺点 :  ...

  5. Linux下的python3,virtualenv,Mysql、nginx、redis等常用服务安装配置

    Linux下的python3,virtualenv,Mysql.nginx.redis等常用服务安装配置   学了前面的Linux基础,想必童鞋们是不是更感兴趣了?接下来就学习常用服务部署吧! 安装环 ...

  6. 安装ubuntu到移动硬盘(UEFI+GPT),实现在别的电脑也可以使用(详细教程)

    前置说明:博主小白,第一次安装ubuntu,参考了网上很多人的教程,发博记录一下自己的安装过程.由于有些地方博主理解较浅或者因为机器硬件等各方面原因,本教程适用有限,仅供参考. 1.准备工作 win系 ...

  7. Intel 8086 标志寄存器及JCC指令表

    汇编 JCC指令表 JCC指条件跳转指令,CC就是指条件码. JCC指令 中文含义 英文原意 检查符号位 典型C应用 JZ/JE 若为0则跳转:若相等则跳转 jump if zero;jump if ...

  8. Selenium实战(五)——HTML测试报告

    一.概览下载与安装 HTMLTestRunner是unittest的一个扩展,可以生成易于使用的HTML测试报告.HTMLTestRunner是在BSD许可证下发布的. 下载地址:http://tun ...

  9. Count the Colors ZOJ - 1610 区间颜色覆盖

    #include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> ...

  10. C. Long Beautiful Integer

    题目思路还是很直接,首先按要求生成字符串.如果该目标字符串小于原字符串,那么从第k位开始,找到最后一个非9的位置,++,同时如果有9,要考虑进位(一开始没有考虑WA了一次). 犯了一个错误,就是比较字 ...