题面

题解

设 \(f[i][j]\) 代表长度为 \(i\) 的序列, 乘积模 \(m\) 为 \(j\) 的序列有多少个

转移方程如下

\[f[i + j][C] = \sum_{A*B\equiv C \pmod{m} }f[i][B] * f[j][A]
\]

复杂度是 \(O(nm^2)\) 的

考虑倍增, 用类似快速幂那样的东西

\[f[2 * i][C] = \sum_{A*B\equiv C \pmod{m} }f[i][B] * f[i][A]
\]

恩, 复杂度变为了 \(O(m^2logn)\) 的

继续优化

上式相当于一个东西, 看到这个地方

\[c[z] = \sum_{x*y \equiv z \pmod m}a[x]b[y]
\]

如果是这样一种形式

\[c[z] = \sum_{x+y=z}a[x]b[y]
\]

我们就可以用 NTT 优化了

我们知道对数可以把乘法转成加法

但是对数是一个实数, 我们需要考虑一个模意义下的对数

把原根当做底数就可以了, 于是我们将上式转化为

\[c[log_gz] = \sum_{log_gx+log_gy\equiv log_gz\pmod m}a[log_gx]b[log_gy]
\]

考虑到 \(log_gx+log_gy\) 可能会大于 \(m\)

但是它一定不会大于 \(2m\) , 所以我们对于 \(c[z]\) 这个位置, 加上 \(c[z + m - 1]\) , 再将 \(c[z + m - 1]\) 清零即可

Code

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <map>
const int N = 40005;
const int mod = 1004535809;
using namespace std; int n, m, X, S, lim, cnt, r[N], g, gg, a[N], b[N], res[N], f[N], top, fact[20005];
map<int, int> mp; template < typename T >
inline T read()
{
T x = 0, w = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * w;
} int fpow(int x, int y, int p)
{
int res = 1;
for( ; y; y >>= 1, x = 1ll * x * x % p)
if(y & 1) res = 1ll * res * x % p;
return res;
} int getroot(int x)
{
top = 0;
int rem = x - 1, p = rem;
for(int i = 2; i * i <= x; i++)
if(!(rem % i))
{
fact[++top] = i;
while(!(rem % i)) rem /= i;
}
if(rem > 1) fact[++top] = rem;
for(int flag = 1, i = 2; i <= p; i++, flag = 1)
{
for(int j = 1; j <= top && flag; j++)
if(fpow(i, p / fact[j], x) == 1) flag = 0;
if(flag) return i;
}
return -1;
} void ntt(int *p, int opt)
{
for(int i = 0; i < lim; i++) if(i < r[i]) swap(p[i], p[r[i]]);
for(int i = 1; i < lim; i <<= 1)
{
int rt = fpow(opt == 1 ? g : gg, (mod - 1) / (i << 1), mod);
for(int j = 0; j < lim; j += (i << 1))
{
int w = 1;
for(int k = j; k < j + i; k++, w = 1ll * w * rt % mod)
{
int x = p[k], y = 1ll * w * p[k + i] % mod;
p[k] = (1ll * x + y) % mod, p[k + i] = (1ll * x - y + mod) % mod;
}
}
}
if(opt == -1)
{
int inv = fpow(lim, mod - 2, mod);
for(int i = 0; i < lim; i++) a[i] = 1ll * a[i] * inv % mod;
}
} void mul(int *A, int *B, int *C)
{
for(int i = 0; i < lim; i++) a[i] = A[i], b[i] = B[i];
ntt(a, 1), ntt(b, 1);
for(int i = 0; i < lim; i++) a[i] = 1ll * a[i] * b[i] % mod;
ntt(a, -1);
for(int i = 0; i < m - 1; i++) a[i] = (1ll * a[i] + a[i + m - 1]) % mod, a[i + m - 1] = 0;
for(int i = 0; i < lim; i++) C[i] = a[i];
} int main()
{
n = read <int> (), m = read <int> (), X = read <int> (), S = read <int> ();
g = getroot(m), gg = fpow(g, m - 2, m);
for(int tmp = 1, i = 0; i < m - 1; i++, tmp = 1ll * tmp * g % m) mp[tmp] = i;
for(int x, i = 1; i <= S; i++)
{
x = read <int> ();
if(x) f[mp[x]]++;
}
res[mp[1]] = 1;
for(lim = 1; lim <= 2 * m; lim <<= 1, cnt++); cnt--;
for(int i = 0; i < lim; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << cnt);
g = getroot(mod), gg = fpow(g, mod - 2, mod);
while(n)
{
if(n & 1) mul(res, f, res);
mul(f, f, f);
n >>= 1;
}
printf("%d\n", res[mp[X]]);
return 0;
}

[题解] [SDOI2015] 序列统计的更多相关文章

  1. 【题解】SDOI2015序列统计

    [题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...

  2. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  3. 【LG3321】[SDOI2015]序列统计

    [LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...

  4. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  5. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  6. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  7. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

  8. 3992: [SDOI2015]序列统计

    3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...

  9. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

随机推荐

  1. 十一、微信小程序-var、let、const用法详解

    let命令 基本用法 ES6 新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效. { let a = 10; var b = 1; } a // ...

  2. wstngfw中配置squid

    wstngfw中配置squid Squid是一个缓存 Internet 数据的软件,其接收用户的下载申请,并自动处理所下载的数据.当一个用户想要下载一个主页时,可以向 Squid 发出一个申请,要 S ...

  3. http协议与soap协议之间的区别

    http是标准超文本传输协议.使用对参数进行编码并将参数作为键值对传递,还使用关联的请求语义.每个协议都包含一系列HTTP请求标头及其他一些信息,定义客户端向服务器请求哪些内容,服务器用一系列HTTP ...

  4. GIL锁、进程池与线程池、同步异步

    GIL锁定义 GIL锁:Global Interpreter Lock  全局解释器 本质上是一把互斥锁 官方解释: 在CPython中,这个全局解释器锁,也称为GIL,是一个互斥锁,防止多个线程在同 ...

  5. KVM之virsh管理虚拟机硬盘配置

    新建raw格式虚拟盘 [root@ubuntu ~]# qemu-img create -f raw /data/raw/disk02.raw 5G Formatting '/data/raw/dis ...

  6. Eclipse中如何创建一个完整的Maven-Web项目

    Maven Web项目搭建 1.首先确保本地开发环境搭建完毕(jdk,maven). 2.打开Eclipse,新建Maven项目.选择Maven Project选项. 3.将第一项:Create a ...

  7. Atollic TrueSTUDIO编译选项-优化设置

    最近在玩stm32f407,比较懒,就直接使用Atollic TrueSTUDIO,官方版本,还免费,但是编译后,一直感觉代码添加了优化,语句执行顺序和代码不一致,在线调试时,有些变量的数值被优化了, ...

  8. Nginx系列1.1:ubuntu16.04编译nginx-rtmp流媒体服务器

    1.下载nginx和nginx-rtmp-module nginx官网:nginx.org tar.gz文件 解压缩命令: wget https://nginx.org/download/nginx- ...

  9. ping加上时间信息

    一.linux系统ping加时间戳信息 1.ping 加时间信息,然后还要实时保存到一个文件中,那么就与awk结合 ping 115.239.211.112 -c 10 | awk '{ print ...

  10. Ubuntu系统---安NVIDIA 驱动后 CUDA+cuDNN 安装

    Ubuntu系统---安NVIDIA 驱动后  CUDA+cuDNN 安装 --------------------------------------------@20190726--------- ...