uoj308 【UNR #2】UOJ拯救计划
【题解】
考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$
意思是从$k$所选$i$所出来染色,$cnt$为固定颜色顺序的染色方案,$i!$为可以交换学校位置。
考虑当$i \geq 3$的时候,贡献含有模数因子6,所以模6为0,相当于没有贡献。
当$i = 1$,显然只有$m = 0$有贡献。
对于$m = 0$我们特判,答案显然是$K^n$。
剩下$i = 2$的情况,也就是我们要判断答案是不是一个二分图,如果不是二分图,显然答案为0。
考虑令$cnt' = cnt * i!$,那么二分图的一个连通块只要确定了1个点颜色,剩下确定下来了,所以$cnt' = 2^p$,其中$p$为连通块个数。
那么贡献为$2^{p-1} * k * (k-1)$,直接算就好了。
复杂度$O(T(n + m))$
# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>
// # include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int N = 1e5 + , M = 4e5 + ;
const int mod = ; inline int getint() {
int x = ; char ch = getchar();
while(!isdigit(ch)) ch = getchar();
while(isdigit(ch)) x = (x<<) + (x<<) + ch - '', ch = getchar();
return x;
} int n, m, K, head[N], nxt[M], to[M], tot = ;
inline void add(int u, int v) {
++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v;
}
inline void adde(int u, int v) {
add(u, v), add(v, u);
} inline int pwr(int a, int b) {
int ret = ;
while(b) {
if(b&) ret = ret * a % mod;
a = a * a % mod;
b >>= ;
}
return ret;
} bool ok; int c[N];
inline void color(int x) {
for (int i=head[x]; i; i=nxt[i]) {
if(c[to[i]]) {
if(c[x] == c[to[i]]) {
ok = ;
}
continue;
}
c[to[i]] = -c[x];
color(to[i]);
}
} inline void sol() {
n = getint(); m = getint(); K = getint(); tot = ;
for (int i=; i<=n; ++i) head[i] = c[i] = ;
for (int i=, u, v; i<=m; ++i) {
u = getint(), v = getint();
adde(u, v);
}
if(m == ) {
printf("%d\n", pwr(K, n));
return ;
}
// bitgraph
int ans = ;
ok = ;
for (int i=; i<=n; ++i)
if(!c[i]) {
c[i] = ;
color(i);
ans <<= ; ans %= mod;
if(!ok) {
puts("");
return ;
}
}
printf("%d\n", K * (K-) / * ans % mod);
} int main() {
int T = getint();
while(T--) sol();
return ;
}
uoj308 【UNR #2】UOJ拯救计划的更多相关文章
- [UOJ UNR#2 UOJ拯救计划]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...
- 【UOJ#308】【UNR#2】UOJ拯救计划
[UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2 ...
- Uoj308【UNR #2】UOJ拯救计划
分析:比较难分析的一道题,先把式子写出来,ans=∑C(k,i)*f(i),f(i)是选i个颜色的方案数.这个模数有点奇怪,比较小而且是合数,说不定就会有某种规律,如果i >= 3,可以发现C( ...
- 【UNR #2】UOJ拯救计划
UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不 ...
- A. 【UNR #2】UOJ拯救计划
题解: 感觉多了解一些npc问题是很有用的.. 就不会像我一样完全不考虑模数的性质 前面60分大概是送分 后面主要考虑一下%6带来的影响 平常都是那么大的模数,突然这么小??? 考虑正好使用k种颜色的 ...
- 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...
- uoj#308. 【UNR #2】UOJ拯救计划(并查集)
传送门 如果把答案写出来,就是\(\sum_{i=1}^ki!\times {k\choose i}\times f_i\),其中\(f_i\)为选\(i\)种颜色方案 发现如果\(i\geq 3\) ...
- UOJ #460 新年的拯救计划
清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$ ...
- UOJ#460. 新年的拯救计划 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2 ...
随机推荐
- Kprobe
linux内核源码Documentation目录下存在kprobe介绍文档如下 Kprobes allows multiple probes at the same address. Current ...
- TCP系列09—连接管理—8、TCP Reset
我们在介绍TCP头的时候,提到过其中有个RST标志位.当一个TCP报文中这个标志位打开的时候,我们叫做reset包(严格的说应该叫做reset段,但是很多时候段包帧并不加以区分)或者简单称呼为rese ...
- vue服务端渲染axios预取数据
首先是要参考vue服务端渲染教程:https://ssr.vuejs.org/zh/data.html. 本文主要代码均参考教程得来.基本原理如下,拷贝的原文教程. 为了解决这个问题,获取的数据需要位 ...
- 修改IntelliJ IDEA代码头注释
- vuex介绍--一篇看懂vuejs的状态管理神器
原文,请点击此链接http://www.ituring.com.cn/article/273487
- 【.NET】- Task.Run 和 Task.Factory.StartNew 区别
Task.Run 是在 dotnet framework 4.5 之后才可以使用, Task.Factory.StartNew 可以使用比 Task.Run 更多的参数,可以做到更多的定制. 可以认为 ...
- sublime text 3103 怎么设置中文
1.shift+ctrl+p调出插件管理,输入install package,按enter键,开始安装. 2.搜索chinese即可,下载安装插件包即可 原文:http://blog.csdn.net ...
- activeMQ 讲解及实战
#### 软件架构项目中需要用到activeMQ 下载地址:http://activemq.apache.org/download.html #### 安装教程需要安装jdk环境activeMQ免安装 ...
- HTML5 不再支持哪些元素
HTML5中已经不支持以下的元素,不建议在进行开发时再使用以下的元素. 1.acronym(建议abbr):定义首字母缩写 2.applet(建议object):定义applet 3.basefont ...
- BZOJ4237 稻草人(分治+树状数组+单调栈)
如果要询问的某个纵坐标为inf的点左边是否有点能与其构成所要求的矩形,只要用个单调栈就可以了.可以想到用分治来制造单调性. 按横坐标排序,每次考虑跨过分治中心的矩形.考虑右边的每个点能与左边的哪些点构 ...