http://www.lydsy.com/JudgeOnline/problem.php?id=1090

Description

折叠的定义如下: 1. 一个字符串可以看成它自身的折叠。记作S=S 2. X(S)是X(X>1)个S连接在一起的串的折叠。记作X(S)=SSSS…S(X个S)。 3. 如果A=A’, B=B’,则AB=A’B’ 例如,因为3(A) = AAA, 2(B) = BB,所以3(A)C2(B)=AAACBB,而2(3(A)C)2(B)=AAACAAACBB

给一个字符串,求它的最短折叠。例如AAAAAAAAAABABABCCD的最短折叠为:9(A)3(AB)CCD。

Input

仅一行,即字符串S,长度保证不超过100。

Output

仅一行,即最短的折叠长度。

Sample Input

NEERCYESYESYESNEERCYESYESYES

Sample Output

14

——————————————————————————————————

我竟然自己做了一道dp!

f[i][j]表示i~j压缩后最短长度。

显然我们有:

for(int k=i;k<j;k++)f[i][j]=min(f[i][j],f[i][k]+f[k+][j]);

接下来就是压缩了。

我们可以枚举区间长度的倍数,然后判断是否可以压缩,并且判断压缩之后是否会变的更小即可了!

复杂度看似O(n^3*根号n),但是实际上达不到,所以能过就是了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
int f[N][N];
char s[N];
inline int w(int x){
if(x==)return ;
if(x>=)return ;
return ;
}
bool check(int k,int l,int r,int len){
for(int i=l+len;i<=r;i++){
if(s[i-len]!=s[i])return ;
}
return ;
}
int main(){
cin>>s+;
int n=strlen(s+);
for(int i=;i<=n;i++)f[i][i]=;
for(int l=;l<=n;l++){
for(int i=;i<=n-l+;i++){
int j=i+l-;
f[i][j]=l;
for(int k=i;k<j;k++)f[i][j]=min(f[i][j],f[i][k]+f[k+][j]);
for(int k=l;k>=;k--){
if(l%k)continue;
int len=(j-i+)/k;
if(check(k,i,j,len)){
if(f[i][j]>f[i][i+len-]+w(k)){
f[i][j]=f[i][i+len-]+w(k);
break;
}
}
}
}
}
printf("%d\n",f[][n]);
return ;
}

BZOJ1090:[SCOI2003]字符串折叠——题解的更多相关文章

  1. BZOJ1090: [SCOI2003]字符串折叠

    区间dp. 一种是分段dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]); 一种是这一段可以缩写dp[i][j]=min(dp[i][j],dp[i][l]+2+ca ...

  2. [bzoj1090][SCOI2003]字符串折叠_区间dp

    字符串折叠 bzoj-1090 SCOI-2003 题目大意:我说不明白...链接 注释:自己看 想法:动态规划 状态:dp[i][j]表示从第i个字符到第j个字符折叠后的最短长度. 转移:dp[l] ...

  3. BZOJ1090 [SCOI2003]字符串折叠 区间动态规划 字符串

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1090 题意概括 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S 2. X(S)是X ...

  4. bzoj1090 [SCOI2003]字符串折叠——区间DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1090 区间DP... 代码如下: #include<iostream> #inc ...

  5. 【BZOJ1090】[SCOI2003]字符串折叠(动态规划)

    [BZOJ1090][SCOI2003]字符串折叠(动态规划) 题面 BZOJ 洛谷 题解 区间\(dp\).设\(f[i][j]\)表示压缩\([i,j]\)区间的最小长度.显然可以枚举端点转移.再 ...

  6. 【bzoj1090】 [SCOI2003]字符串折叠

    [bzoj1090] [SCOI2003]字符串折叠 2014年3月9日3,1140 Description 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S  S 2. X(S)是X ...

  7. BZOJ 1090: [SCOI2003]字符串折叠 区间DP

    1090: [SCOI2003]字符串折叠 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  8. 【BZOJ-1090】字符串折叠 区间DP + Hash

    1090: [SCOI2003]字符串折叠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1127  Solved: 737[Submit][Stat ...

  9. [SCOI2003]字符串折叠(区间dp)

    P4302 [SCOI2003]字符串折叠 题目描述 折叠的定义如下: 一个字符串可以看成它自身的折叠.记作S = S X(S)是X(X>1)个S连接在一起的串的折叠.记作X(S) = SSSS ...

随机推荐

  1. 客户端SDK测试思路

    本文来自网易云社区 作者:万春艳 是什么 客户端SDK是为第三方开发者提供的软件开发工具包,包括SDK接口.开发文档和Demo示例等.SDK和应用之间是什么关系呢?以云信即时消息服务为例,如下图所示, ...

  2. 使用GC 初始化DG(将备份集复制到目标端再初始化)

    概述 当前环境中有一个GC节点,一套RAC 11.2.0.4的数据库,一个已经使用GC进行在线初始化好的dg环境,需要模拟在远端使用rman备份集进行初始化DG的操作.   恢复环境 当前环境中 已经 ...

  3. redhat防火墙管理

    systemctl status firewalldsystemctl stop firewalldsystemctl start firewalldsystemctl enable firewall ...

  4. js 中常用到的封装方法

    /** * 获取URL参数 */ function getQueryString(name) { var reg = new RegExp("(^|&)" + name + ...

  5. Pyhton网络爬虫实例_豆瓣电影排行榜_Xpath方法爬取

    -----------------------------------------------------------学无止境------------------------------------- ...

  6. ionic 日期插件学习

    <ion-header> <ion-navbar> <ion-title> DateTime </ion-title> </ion-navbar& ...

  7. BOM / URL编码解码 / 浏览器存储

    BOM 浏览器对象模型 BOM(Browser Object Model) 是指浏览器对象模型,是用于描述这种对象与对象之间层次关系的模型,浏览器对象模型提供了独立于内容的.可以与浏览器窗口进行互动的 ...

  8. 【第五章】MySQL数据库的安全机制

    MySQL权限表MySQL用户管理MySQL权限管理SSL加密连接

  9. 57[LeetCode] Insert Interval

    Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...

  10. Linux系统inotify工具安装配置

    inotify主要功能 Inotify 是一个 Linux特性,它监控文件系统操作,比如读取.写入和创建.Inotify 反应灵敏,用法非常简单,并且比 cron 任务的繁忙轮询高效得多.学习如何将 ...