http://www.lydsy.com/JudgeOnline/problem.php?id=1090

Description

折叠的定义如下: 1. 一个字符串可以看成它自身的折叠。记作S=S 2. X(S)是X(X>1)个S连接在一起的串的折叠。记作X(S)=SSSS…S(X个S)。 3. 如果A=A’, B=B’,则AB=A’B’ 例如,因为3(A) = AAA, 2(B) = BB,所以3(A)C2(B)=AAACBB,而2(3(A)C)2(B)=AAACAAACBB

给一个字符串,求它的最短折叠。例如AAAAAAAAAABABABCCD的最短折叠为:9(A)3(AB)CCD。

Input

仅一行,即字符串S,长度保证不超过100。

Output

仅一行,即最短的折叠长度。

Sample Input

NEERCYESYESYESNEERCYESYESYES

Sample Output

14

——————————————————————————————————

我竟然自己做了一道dp!

f[i][j]表示i~j压缩后最短长度。

显然我们有:

for(int k=i;k<j;k++)f[i][j]=min(f[i][j],f[i][k]+f[k+][j]);

接下来就是压缩了。

我们可以枚举区间长度的倍数,然后判断是否可以压缩,并且判断压缩之后是否会变的更小即可了!

复杂度看似O(n^3*根号n),但是实际上达不到,所以能过就是了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
int f[N][N];
char s[N];
inline int w(int x){
if(x==)return ;
if(x>=)return ;
return ;
}
bool check(int k,int l,int r,int len){
for(int i=l+len;i<=r;i++){
if(s[i-len]!=s[i])return ;
}
return ;
}
int main(){
cin>>s+;
int n=strlen(s+);
for(int i=;i<=n;i++)f[i][i]=;
for(int l=;l<=n;l++){
for(int i=;i<=n-l+;i++){
int j=i+l-;
f[i][j]=l;
for(int k=i;k<j;k++)f[i][j]=min(f[i][j],f[i][k]+f[k+][j]);
for(int k=l;k>=;k--){
if(l%k)continue;
int len=(j-i+)/k;
if(check(k,i,j,len)){
if(f[i][j]>f[i][i+len-]+w(k)){
f[i][j]=f[i][i+len-]+w(k);
break;
}
}
}
}
}
printf("%d\n",f[][n]);
return ;
}

BZOJ1090:[SCOI2003]字符串折叠——题解的更多相关文章

  1. BZOJ1090: [SCOI2003]字符串折叠

    区间dp. 一种是分段dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]); 一种是这一段可以缩写dp[i][j]=min(dp[i][j],dp[i][l]+2+ca ...

  2. [bzoj1090][SCOI2003]字符串折叠_区间dp

    字符串折叠 bzoj-1090 SCOI-2003 题目大意:我说不明白...链接 注释:自己看 想法:动态规划 状态:dp[i][j]表示从第i个字符到第j个字符折叠后的最短长度. 转移:dp[l] ...

  3. BZOJ1090 [SCOI2003]字符串折叠 区间动态规划 字符串

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1090 题意概括 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S 2. X(S)是X ...

  4. bzoj1090 [SCOI2003]字符串折叠——区间DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1090 区间DP... 代码如下: #include<iostream> #inc ...

  5. 【BZOJ1090】[SCOI2003]字符串折叠(动态规划)

    [BZOJ1090][SCOI2003]字符串折叠(动态规划) 题面 BZOJ 洛谷 题解 区间\(dp\).设\(f[i][j]\)表示压缩\([i,j]\)区间的最小长度.显然可以枚举端点转移.再 ...

  6. 【bzoj1090】 [SCOI2003]字符串折叠

    [bzoj1090] [SCOI2003]字符串折叠 2014年3月9日3,1140 Description 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S  S 2. X(S)是X ...

  7. BZOJ 1090: [SCOI2003]字符串折叠 区间DP

    1090: [SCOI2003]字符串折叠 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  8. 【BZOJ-1090】字符串折叠 区间DP + Hash

    1090: [SCOI2003]字符串折叠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1127  Solved: 737[Submit][Stat ...

  9. [SCOI2003]字符串折叠(区间dp)

    P4302 [SCOI2003]字符串折叠 题目描述 折叠的定义如下: 一个字符串可以看成它自身的折叠.记作S = S X(S)是X(X>1)个S连接在一起的串的折叠.记作X(S) = SSSS ...

随机推荐

  1. 开胃小菜——impress.js代码详解

    README 友情提醒,下面有大量代码,由于网页上代码显示都是同一个颜色,所以推荐大家复制到自己的代码编辑器中看. 今天闲来无事,研究了一番impress.js的源码.由于之前研究过jQuery,看i ...

  2. 怎么设计好移动APP测试用例

    软件测试工作中我们需要不断的储备和总结自己的知识和经验,怎么设计好移动APP测试用例?如:手机.平板.智能设备,并在特定网络环境下. 我们需要关注的功能点,容易出错的位置,这将对我们整个测试过程起着至 ...

  3. angular-使用iframe做独立页(iframe传值到angular和iframe里请求后台数据)

    这个方法使用过两次.一次是在项目中嵌入一个表达式生成器.因为用别人做好的网页变成组件很难,而且里面用了jq,与angular思想相反不能用.另一次是因为想要单独引用样式.而innerHTML使用的样式 ...

  4. 【system.array】使用说明

    对象:system.array 说明:提供一系列针对数组类型的操作 目录: 方法 返回 说明 system.array.join( array, separator ) [String]  将数组转换 ...

  5. java 流 文件 IO

    Java 流(Stream).文件(File)和IO Java.io 包几乎包含了所有操作输入.输出需要的类.所有这些流类代表了输入源和输出目标. Java.io 包中的流支持很多种格式,比如:基本类 ...

  6. [Clr via C#读书笔记]Cp14字符字符串和文本处理

    Cp14字符字符串和文本处理 字符 System.Char结构,2个字节的Unicode,提供了大量的静态方法:可以直接强制转换成数值: 字符串 使用最频繁的类型:不可变:引用类型,在堆上分配,但是使 ...

  7. Educational Codeforces Round 32 Problem 888C - K-Dominant Character

    1) Link to the problem: http://codeforces.com/contest/888/problem/C 2) Description: You are given a ...

  8. LeetCode - 566. Reshape the Matrix (C++) O(n)

    1. 题目大意 根据给定矩阵,重塑一个矩阵,r是所求矩阵的行数,c是所求矩阵的列数.如果给定矩阵和所求矩阵的数据个数不一样,那么返回原矩阵.否则,重塑矩阵.其中两个矩阵中的数据顺序不变(先行后列). ...

  9. 常用实例:js格式化手机号为3 4 4形式

    如何在填写手机号时将格式转换为3 4 4形式: 一:填写手机号时,在keyup事件中判断长度,符合条件时在值后面插入空格 $('#username').on('keyup',function(e){ ...

  10. Thunder团队贡献分分配规则

    规则1:基础分,拿出总分的40%进行均分. 规则2:参与会议者,每人次加0.5分. 规则3:积极贡献者,通过团队投票,半数及以上同意,每次加0.5分. 规则4:根据项目完成情况,核实每个人的工作量,投 ...