概述

1 从什么叫“维度”说开来

我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算;再比如说,sklearn中导入特征矩阵,必须是至少二维;上周我们讲解特征工程,还特地提到了,特征选择的目的是通过降维来降低算法的计算成本……这些语言都很正常地被我用来使用,直到有一天,一个小伙伴问了我,”维度“到底是什么?

对于数组和Series来说,维度就是功能shape返回的结果,shape中返回了几个数字,就是几维。索引以外的数据,不分行列的叫一维(此时shape返回唯一的维度上的数据个数),有行列之分叫二维(shape返回行x列),也称为表。
一张表最多二维,复数的表构成了更高的维度。当一个数组中存在2张3行4列的表时,shape返回的是(更高维,行,列)。当数组中存在2组2张3行4列的表时,数据就是4维,shape返回(2,2,3,4)。

数组中的每一张表,都可以是一个特征矩阵或一个DataFrame,这些结构永远只有一张表,所以一定有行列,其中行是样本,列是特征。
针对每一张表,维度指的是样本的数量或特征的数量,一般无特别说明,指的都是特征的数量。除了索引之外,一个特征是一维,两个特征是二维,n个特征是n维。

对图像来说,维度就是图像中特征向量的数量。

特征向量可以理解为是坐标轴,一个特征向量定义一条直线,是一维,两个相互垂直的特征向量定义一个平面,即一个直角坐标系,就是二维,三个相互垂直的特征向量定义一个空
间,即一个立体直角坐标系,就是三维。三个以上的特征向量相互垂直,定义人眼无法看见,也无法想象的高维空间。

降维算法中的”降维“,指的是降低特征矩阵中特征的数量。

上周的课中我们说过,降维的目的是为了让算法运算更快,效果更好,但其实还有另一种需求:数据可视化。从上面的图我们其实可以看得出,图像和特征矩阵的维度是可以相互对应的,即一个特征对应一个特征向量,对应一条坐标轴。所以,三维及以下的特征矩阵,是可以被可视化的,这可以帮助我们很快地理解数据的分布,而三维以上特征矩阵的则不能被可视化,数据的性质也就比较难理解。

2 sklearn中的降维算法

sklearn中降维算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。
矩阵分解可以用在降维,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。

机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述的更多相关文章

  1. 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform

    重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...

  2. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  3. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  4. 机器学习实战基础(二十二):sklearn中的降维算法PCA和SVD(三) PCA与SVD 之 重要参数n_components

    重要参数n_components n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,一般输入[0, min(X.shape)]范围中的整数. ...

  5. 机器学习实战基础(二十五):sklearn中的降维算法PCA和SVD(六) 重要接口,参数和属性总结

    到现在,我们已经完成了对PCA的讲解.我们讲解了重要参数参数n_components,svd_solver,random_state,讲解了三个重要属性:components_, explained_ ...

  6. 机器学习实战基础(二十六):sklearn中的降维算法PCA和SVD(七) 附录

  7. 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维

    PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...

  8. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  9. 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值

    缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...

随机推荐

  1. C#数据结构与算法系列(三):队列

    1.介绍 队列是一个有序列表,可以用数组或是链表来实现. 遵循先入先出的原则,即:先存入队列的数据,要先取出.后存入的要后取出 队列是属于线性结构中的一种 2.图示  3.通过数组实现 public ...

  2. Spark读取Hbase中的数据

    大家可能都知道很熟悉Spark的两种常见的数据读取方式(存放到RDD中):(1).调用parallelize函数直接从集合中获取数据,并存入RDD中:Java版本如下: JavaRDD<Inte ...

  3. (三)log4j常用配置

    控制台(console) log4j.appender.stdout = org.apache.log4j.ConsoleAppender log4j.appender.stdout.Target = ...

  4. 03 . Jenkins构建之代码扫描

    Sonar简介 Sonar 是一个用于代码质量管理的开放平台.通过插件机制,Sonar可以集成不同的测试工具,代码分析工具,以及持续集成工具.与持续集成工具(例如 Hudson/Jenkins 等)不 ...

  5. Android笔记布局资源文件

    在项目的res--layout目录下的文件叫布局资源文件,用于控制页面的布局显示 在Java代码中引用布局资源我们已经很熟悉了. setContentView(R.layout.activity_ma ...

  6. 0xC0000005: Access Violation -vc++6.0

    0xC0000005: Access Violation -vc++6.0 aps001,002,003创建的C:\SMW200DATA\DATA,内容是不一样的,不通用的.读取相关文件就会报错咯. ...

  7. Springboot基于assembly的服务化打包

    (1)首先我们编辑 assembly.xml 配置文件,在前文的基础上新增第三方依赖设置(高亮部分),实现将第三方的 jar 包添加到压缩包里的 lib 目录: <?xml version=&q ...

  8. psp表格

    陈康杰psp表格 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 10 10 Estimate 估计这个任务 ...

  9. 网络框架OKHTTP使用场景全解析

    [本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 一.引言 说句实 ...

  10. 爬取B站弹幕并且制作词云

    目录 爬取弹幕 1. 从手机端口进入网页爬取找到接口 2.代码 制作词云 1.文件读取 2.代码 爬取弹幕 1. 从手机端口进入网页爬取找到接口 2.代码 import requests from l ...