题解 洛谷 P4632 【[APIO2018] New Home 新家】
首先考虑可以用二分答案来解决询问,可以二分一个长度\(len\),若在区间\([x-len,x+len]\)内包含了所有\(k\)种的商店,那么这个\(len\)就是合法的,可以通过二分来求其最小值。
对每个商店的存在时间转化为在\(a\)时刻出现,在\(b+1\)时刻消失,然后和询问一起离线按时间排序,就可以解决时间这一维的限制了。
然后考虑如何快速查询区间内是否包含所有的商店,和支持维护商店的出现消失。
对于这种区间数颜色的问题,可以对每个位置记录与其商店类型相同的上一个位置\(pre\),发现一个位置上可能会有多个商店,那么这里的\(pre\)改为记录这些商店的到其各自商店类型相同的上一个位置的最小值。
\(pre\)是记录该位置商店类型相同的上一个位置,所以对于区间\([l,r]\),如果从\(r+1\)往后的所有位置的\(pre\)的最小值小于\(l\),那么说明至少有一种商店没在该区间出现。但是\(r+1\)往后可能并不会包含所有\(k\)种商店,因此加入哨兵商店来避免讨论,分别在最前面和最后面加入每种商店各一个。
然后就是如何支持维护\(pre\),对于每个位置开一个\(multiset\)维护该位置所有商店的对应其商店类型的前驱,\(multiset\)中的最小值即为该位置的\(pre\),然后用线段树动态开点来维护区间\(pre\)的最小值,这里其实就是在线段树的每个叶子节点开了一个\(multiset\)来维护信息。
对于商店的出现消失维护,对每种商店类型开一个\(multiset\),维护该类型所有商店的出现位置,然后出现和消失只用解决对于该位置同类型的前驱和后继的影响就行,线段树单点修改即可实现。
若用线段树查询最小值来判定二分,复杂度是\(O(n\ log^2\ n)\)的,可以直接在线段树上二分位置,复杂度就是\(O(n\ log\ n)\)的了。
细节挺多,具体实现就看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 900010
#define all 200000000
#define mid ((l+r)>>1)
using namespace std;
typedef multiset<int>::iterator muli;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,k,q,tot,root,tree_cnt,num;
int mi[maxn*20],ls[maxn*20],rs[maxn*20],ans[maxn];
multiset<int> p[maxn],s[maxn*20];
struct node
{
int pos,tim,id,opt;
}t[maxn];
bool cmp(const node &a,const node &b)
{
if(a.tim==b.tim) return a.opt<b.opt;
return a.tim<b.tim;
}
void modify(int l,int r,int pos,int v,int type,int &cur)
{
if(!cur) cur=++tree_cnt;
if(l==r)
{
if(type) s[cur].insert(v);
else s[cur].erase(s[cur].find(v));
if(!s[cur].empty()) mi[cur]=*s[cur].begin();
else mi[cur]=all;
return;
}
if(pos<=mid) modify(l,mid,pos,v,type,ls[cur]);
else modify(mid+1,r,pos,v,type,rs[cur]);
mi[cur]=min(mi[ls[cur]],mi[rs[cur]]);
}
int query(int pos)
{
if(num<k) return -1;
int l=1,r=all,cur=root,midmi,rmi=all;
while(l<r)
{
midmi=min(rmi,mi[rs[cur]]);
if(pos>mid||midmi<2*pos-mid) cur=rs[cur],l=mid+1;
else rmi=midmi,cur=ls[cur],r=mid;
}
return l-pos;
}
int main()
{
read(n),read(k),read(q),mi[0]=all;
for(int i=1;i<=k;++i)
{
p[i].insert(-all),p[i].insert(all);
modify(1,all,all,-all,1,root);
}
for(int i=1;i<=n;++i)
{
int x,id,a,b;
read(x),read(id),read(a),read(b);
t[++tot]=(node){x,a,id,1};
t[++tot]=(node){x,b+1,id,0};
}
for(int i=1;i<=q;++i)
{
int pos,tim;
read(pos),read(tim);
t[++tot]=(node){pos,tim,i,2};
}
sort(t+1,t+tot+1,cmp);
for(int i=1;i<=tot;++i)
{
int opt=t[i].opt,id=t[i].id,pos=t[i].pos;
muli a,b;
if(opt==0)
{
a=b=p[id].lower_bound(pos),a--,b++;
modify(1,all,*b,pos,0,root);
modify(1,all,*b,*a,1,root);
modify(1,all,pos,*a,0,root);
if(p[id].size()==3) num--;
p[id].erase(p[id].find(pos));
}
if(opt==1)
{
a=b=p[id].lower_bound(pos),a--;
modify(1,all,*b,pos,1,root);
modify(1,all,*b,*a,0,root);
modify(1,all,pos,*a,1,root);
if(p[id].size()==2) num++;
p[id].insert(pos);
}
if(opt==2) ans[id]=query(pos);
}
for(int i=1;i<=q;++i) printf("%d\n",ans[i]);
return 0;
}
题解 洛谷 P4632 【[APIO2018] New Home 新家】的更多相关文章
- 洛谷P4632 [APIO2018] New Home 新家(动态开节点线段树 二分答案 扫描线 set)
题意 题目链接 Sol 这题没有想象中的那么难,但也绝对不简单. 首先把所有的询问离线,按照出现的顺序.维护时间轴来处理每个询问 对于每个询问\((x_i, y_i)\),可以二分答案\(mid\). ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 题解
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家(树链剖分)
题目描述松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前来 ...
- 洛谷P3258 [JLOI2014]松鼠的新家(树上差分+树剖)
题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 解题报告
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 洛谷P3258 [JLOI2014]松鼠的新家
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 洛谷——P3258 [JLOI2014]松鼠的新家
https://www.luogu.org/problem/show?pid=3258 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 树链剖分+差分前缀和优化
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 说明 思路 AC代码 优化 优化后AC代码 总结 题面 题目链接 P3258 [JLOI2 ...
- 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)
思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...
随机推荐
- Java Service Wrapper 浅谈
在实际开发过程中很多模块需要独立运行,他们并不会以web形式发布,传统的做法是将其压缩为jar包独立运行,这种形式简单易行也比较利于维护,但是 一旦服务器重启或出现异常时,程序往往无法自行修复或重启. ...
- tomcat中AJP协议和HTTP协议的区别
tomcat的server.xml中的AJP和HTTP连接器区别 HTTP协议:连接器监听8080端口,负责建立HTTP连接.在通过浏览器访问Tomcat服务器的Web应用时,使用的就是这个连接器. ...
- SpringBoot--使用Spring Cache整合redis
一.简介 Spring Cache是Spring对缓存的封装,适用于 EHCache.Redis.Guava等缓存技术. 二.作用 主要是可以使用注解的方式来处理缓存,例如,我们使用redis缓存时, ...
- Python实用笔记 (9)高级特性——列表生成式
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式. 举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, ...
- Kubernetes 中 搭建 EFK 日志搜索中心
简介 Elastic 官方已经发布了Elasticsearch Operator ,简化了 elasticsearch 以及 kibana的部署与升级,结合 fluentd-kubernetes-da ...
- python学习_Linux系统的常用命令(二)
linux基本命令: 1.ls 的详细操作: ls - l : 以列表方式显示文件的详细信息 ls -l -h: 以人性化的方式显示文件的大小 ls -l -h -a 显示所有的目录和文件,包括隐藏文 ...
- 每日一题 - 剑指 Offer 44. 数字序列中某一位的数字
题目信息 时间: 2019-07-01 题目链接:Leetcode tag: 规律 难易程度:中等 题目描述: 数字以0123456789101112131415-的格式序列化到一个字符序列中.在这个 ...
- Django---进阶12
目录 Auth模块 方法总结 如何扩展auth_user表 项目开发流程 表设计 作业 Auth模块 """ 其实我们在创建好一个django项目之后直接执行数据库迁移命 ...
- MySQL 对window函数执行sum函数疑似Bug
MySQL 对window函数执行sum函数疑似Bug 使用MySql的窗口函数统计数据时,发现一个小的问题,与大家一起探讨下. 环境配置: mysql-installer-community-8.0 ...
- 终于理解Python中的迭代器和生成器了!
迭代器和生成器 目录 迭代器和生成器 可迭代对象和迭代器 基础概念 判断 for循环本质 不想用for循环迭代了,如何使用迭代器? 列表推导式 生成器Generator 概念 如何实现和使用? 生成器 ...