Leonardo's Notebook UVALive - 3641(置换)
题意:
给出26个大写字母的置换B,问是否存在一个置换A,使得A2 = B
解析:
两个长度为n的相同循环相乘,1、当n为奇数时结果也是一个长度为n的循环;2、 当n为偶数时分裂为两个长度为n/2 (这个n/2可能是奇数 也可能是偶数)的循环
那么倒推 意思也就是说 对于长度为奇数的循环B(奇数个相同长度的倒推1 偶数个相同长度的倒推2) 总可以找出来一个循环A 使得A2 = B
而对于长度为偶数的循环B 只有偶数个相同长度的才能从2倒推 不然 就不能倒推 即找不到一个A使得A2 = B
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff; string str;
int vis[maxn], bz[maxn];
int main()
{
int T;
rd(T);
while(T--)
{
cin >> str;
mem(vis, );
mem(bz, );
for(int i = ; i < ; i++)
{
int idx = str[i] - 'A';
int cnt = ;
while(!vis[idx])
{
cnt++;
vis[idx] = ;
idx = str[idx] - 'A';
}
bz[cnt]++;
}
int flag = ;
for(int i = ; i < ; i += )
if(bz[i] & ) flag = ;
if(flag) cout << "Yes" << endl;
else cout << "No" << endl; } return ;
}
Leonardo's Notebook UVALive - 3641(置换)的更多相关文章
- Leonardo的笔记本LA 3641——置换的乘法
题意 给出26个大写字母的置换 $B$,问是否存在一个置换 $A$,使得 $A^2=B$. 分析 首先,若A=BC,若B和C都能表示成两个相同循环的乘积,则A也能. 因为,不相交的循环的乘积满足交换律 ...
- poj 3128 Leonardo's Notebook——思路(置换)
题目:http://poj.org/problem?id=3128 从环的角度考虑. 原来有奇数个点的环,现在点数不变: 原来有偶数个点的环(设有 k 个点),现在变成两个大小为 k/2 的环. 所以 ...
- [Poj3128]Leonardo's Notebook
[Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式, ...
- POJ 3128 Leonardo's Notebook (置换)
Leonardo's Notebook Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2324 Accepted: 98 ...
- UVaLive 3641 Leonardo's Notebook (置换)
题意:给定一个置换 B 问是否则存在一个置换 A ,使用 A^2 = B. 析:可以自己画一画,假设 A = (a1, a2, a3)(b1, b2, b3, b4),那么 A^2 = (a1, a2 ...
- LA 3641 (置换 循环的分解) Leonardo's Notebook
给出一个26个大写字母的置换B,是否存在A2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A2就相当于将项链旋转了两 ...
- 【LA 3641】 Leonardo's Notebook (置换群)
[题意] 给出26个大写字母组成 字符串B问是否存在一个置换A使得A^2 = B [分析] 置换前面已经说了,做了这题之后有了更深的了解. 再说说置换群. 首先是群. 置换群的元素是置换,运算时是 ...
- UVA12103 —— Leonardo's Notebook —— 置换分解
题目链接:https://vjudge.net/problem/UVA-12103 题意: 给出大写字母“ABCD……Z”的一个置换B,问是否存在一个置换A,使得A^2 = B. 题解: 对于置换,有 ...
- poj 3128 Leonardo's Notebook (置换群的整幂运算)
题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...
随机推荐
- 如何控制docker的CPU和内存份额
1.内存:docker run -it -m 200M --memory-swap=300M progrium/stress --vm 1 --vm-bytes 500M 刚开始会报错: docker ...
- tcp为什么是三次握手
刷知乎看到的,很可爱啊哈哈哈就顺手黏贴过来了 作者:大闲人柴毛毛链接:https://www.zhihu.com/question/24853633/answer/254224088来源:知乎著作权归 ...
- 认识ASP.NET Windows身份认证
本文摘自:细说ASP.NET Windows身份认证 Forms身份认证虽然使用广泛,不过,如果是在 Windows Active Directory 的环境中使用ASP.NET, 那么使用Windo ...
- JS-JS代码插入位置
一.HTML 页面的 <head> 部分中 由于 HTML 文档是由浏览器从上到下依次载入的,将 JavaScript 代码放置于<head></head> 标签之 ...
- 清除EasyUi combotree下拉树的值
由于测试自带的$(“node”).combotree("clear');问题始终解决不了 最终方法: Hdata是JSON数据源, 在它动态加在成功之后(节点全部显示出来,并且可以选择)再清 ...
- LINQ 如何动态创建 Where 子查询
还是那句话,十年河东,十年河西,莫欺少年穷! 学无止境,精益求精... 今天探讨下如何构造动态的LINQ子查询 LINQ,相信大家都写过,很简单,下面以一个基本的范例说明下: namespace Co ...
- .NET CORE下的Cache
.NET CORE 下的缓存跟之前ASP.NET下的缓存有所不同,应用.NET CORE缓存首先需要引入Microsoft.Extensions.Caching.Memory程序包 下面简单写了一个C ...
- 案例学python——案例一:抓图
最近项目不那么紧张,有时间来研究一下Python,先前断断续续的自学了一段时间,有些浅基础.刚好在码云上看到比较适合的案例,跟着案例再往前走一波. 案例一:爬虫抓图 开发工具:PyCharm 脚 ...
- Vue 实际项目中你可能会遇见问题
纸上得来终觉浅,绝知此事要躬行! Vue的文档和教程看的太多,小的demo做的多,也不如自己实际的进行一个完整项目的开发.只有做了才知道原来问题这么多,这里列举了一些你做demo教程可能不会遇见的坑. ...
- Asp.Net Core基于Cookie实现同域单点登录(SSO)
在同一个域名下有很多子系统 如:a.giant.com b.giant.com c.giant.com等 但是这些系统都是giant.com这个子域. 这样的情况就可以在不引用其它框架的情况下, ...