评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地。

MT【19】舒尔不等式设计理念及证明的更多相关文章

  1. Schur不等式(舒尔不等式)

    舒尔( Schur \texttt{Schur} Schur)不等式1 具体内容 Schur \texttt{Schur} Schur 不等式: x , y , z x,y,z x,y,z 为非负实数 ...

  2. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  3. MT【200】一道自招的不等式

    (2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$ ...

  4. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

  5. Computer Science Theory for the Information Age-6: 学习理论——VC定理的证明

    VC定理的证明 本文讨论VC理论的证明,其主要内容就是证明VC理论的两个定理,所以内容非常的枯燥,但对于充实一下自己的理论知识也是有帮助的.另外,VC理论属于比较难也比较抽象的知识,所以我总结的这些证 ...

  6. 《A First Course in Probability》-chaper8-极限定理-切比雪夫不等式

    基于对概率问题的抽象化,通过期望.方差.随机变量X及其概率,我们想要通过几个量推出另外几个量的特征,笼统的来说,极限定理起到的作用便在于此 切比雪夫不等式: 在证明切比雪夫不等式之前,我们先要完成对马 ...

  7. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  8. [HDU3480] Division [四边形不等式dp]

    题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...

  9. 巴塞尔问题(Basel problem)的多种解法——怎么计算$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$ ?

    (PS:本文会不断更新) $\newcommand\R{\operatorname{Res}}$ 如何计算$\zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{ ...

随机推荐

  1. 3.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——less即more

    Unix提供了两个工具查看不止文件的头部和尾部.这个功能程序叫做more,但有种更强大的变异体叫做less(起初我认为这是玩笑).less这个程序是交互性地,所以很难在输出时捕获,但是仍然为大家提供了 ...

  2. UVA11255 Necklace Burnside、组合

    VJ传送门 因为有每种颜色个数的限制,所以不能使用Polya 考虑退一步,使用Burnside引理求解 回忆一下Burnside引理,它需要求的是置换群中每一个置换的不动点个数,也就是施加一次置换之后 ...

  3. LOJ2538 PKUWC2018 Slay the Spire DP

    传送门 不想放题面了,咕咕咕咕咕 这个期望明明是用来吓人的,其实要算的就是所有方案的最多伤害的和. 首先可以知道的是,能出强化牌就出强化牌(当然最后要留一张攻击牌出出去),且数字尽量大 所以说在强化牌 ...

  4. Ionic App 启动时报Application Error - The connection to the server was unsuccessful

    最近在更新App的时候,发现在华为手机上报这个错误,有点困惑,查找资料分析,大概原因是程序在加载index.html网页时,加载的资源过多,造成时间超时, 这个时原因分析https://stackov ...

  5. ngx_lua 模块

    ngx_lua模块的原理: 1.每个worker(工作进程)创建一个Lua VM,worker内所有协程共享VM:2.将Nginx I/O原语封装后注入 Lua VM,允许Lua代码直接访问:3.每个 ...

  6. 在Windows7上如何找到Cookie

    摘要 出于兴趣爱好,前一阵子做了一个网页,网页中需要用到Cookie,但是,根据书上的说明,并没有找打教材中所说的Cookie的位置,本文就主要介绍在计算机(Win7)中Cookie的存放位置,同样适 ...

  7. 使用ajax方法实现form表单的提交

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 写在前面的话 在使用form表单的时候,一旦点击提交触发submit ...

  8. 提升----你所不知道的JavaScript系列(3)

    很多编程语言在执行的时候都是自上而下执行,但实际上这种想法在JavaScript中并不完全正确, 有一种特殊情况会导致这个假设是错误的.来看看下面的代码, a = 2; var a; console. ...

  9. 深入理解USB流量数据包的抓取与分析

    0x01 问题提出 在一次演练中,我们通过wireshark抓取了一个如下的数据包,我们如何对其进行分析? 0x02 问题分析 流量包是如何捕获的? 首先我们从上面的数据包分析可以知道,这是个USB的 ...

  10. C. Oh Those Palindromes

    题意 给以一个字符串,让你重排列,使得回文子串的数目最多 分析 对于一个回文串,在其中加入一些字符并不会使回文子串的个数增加,所以对于相同的字符一起输出即可,我是直接排序 代码 #include< ...