MT【19】舒尔不等式设计理念及证明
评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地。
MT【19】舒尔不等式设计理念及证明的更多相关文章
- Schur不等式(舒尔不等式)
舒尔( Schur \texttt{Schur} Schur)不等式1 具体内容 Schur \texttt{Schur} Schur 不等式: x , y , z x,y,z x,y,z 为非负实数 ...
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- MT【200】一道自招的不等式
(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$ ...
- 石子合并(四边形不等式优化dp) POJ1160
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...
- Computer Science Theory for the Information Age-6: 学习理论——VC定理的证明
VC定理的证明 本文讨论VC理论的证明,其主要内容就是证明VC理论的两个定理,所以内容非常的枯燥,但对于充实一下自己的理论知识也是有帮助的.另外,VC理论属于比较难也比较抽象的知识,所以我总结的这些证 ...
- 《A First Course in Probability》-chaper8-极限定理-切比雪夫不等式
基于对概率问题的抽象化,通过期望.方差.随机变量X及其概率,我们想要通过几个量推出另外几个量的特征,笼统的来说,极限定理起到的作用便在于此 切比雪夫不等式: 在证明切比雪夫不等式之前,我们先要完成对马 ...
- 区间DP石子合并问题 & 四边形不等式优化
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...
- [HDU3480] Division [四边形不等式dp]
题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\le ...
- 巴塞尔问题(Basel problem)的多种解法——怎么计算$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$ ?
(PS:本文会不断更新) $\newcommand\R{\operatorname{Res}}$ 如何计算$\zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{ ...
随机推荐
- 一个简单的javascript节流器实现
节流器 javascript的节流器主要用于延缓某些动作的执行,比如ajax请求,如果input框注册了input事件,那么当用户输入时就会持续的触发这个事件,如果回调函数中持续的通过ajax调用后台 ...
- Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望
传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...
- 创建一个宽高成比例的弹性div盒子
这里先提供一种,有更好的方法再补充. demo代码如下: <!DOCTYPE html> <html lang="en"> <head> < ...
- odoo 11导入外部数据过程记录
在开发过程中,遇见需要将SQL Server中的数据转移到Pg数据库的情况,那么如何做才能解决这一问题呢? 1.自己写代码,将数据从SQL Server到PG. 2.利用odoo自带的导入功能导入. ...
- 通过Jekins执行bat脚本始终无法完成
问题描述 最近在研究Devops工作流,中间有一个环节是自动发布版本的,我们使用PipeLine调用Jekins任务,最终执行bat脚本,但在执行Jekins任务的时候,任务总是完成不了,导致DBA在 ...
- 如何使用串口来给STM32下载程序
前言 第一次学习STM32的时候,不知道有调试器这个东西,所以一直是通过串口来给STM32下载程序,下载速度也还算可以,一般是几秒钟完成.后来用了调试器,可以直接在Keil环境下进行下载,而且还可以进 ...
- 个人java框架 技术分析
1.框架选型 spring-boot https://github.com/JeffLi1993/springboot-learning-example https://mp.weixin.qq.co ...
- 大话重构连载15:采用Mock技术完成测试
第五次重构我们引入了数据库的设计,用户信息要从数据库中读取,问候语库存储在数据库中,并支持添加与更新.数据库的引入使自动化测试变得困难了,因为数据状态总是变化着的,而这种变化使得测试过程不能复现,这是 ...
- CAD2020下载安装AutoCAD2020中文版下载地址+安装教程
AutoCAD2020中文版为目前最新软件版本,我第一时间拿到软件进行安装测试,确保软件正常安装且各项功能正常可以使用,立刻拿出来分享,想用最新版本的话,抓紧下载使用吧: 我把我用的安装包贡献给你下载 ...
- 20135316王剑桥Linux内核学习记笔记第七周
20135316王剑桥<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC 1000029000 一.可执行程序是怎么得来的? 编译 ...