Kite(几何+镜面对称)
C. Kite
Time Limit: 1000ms Case Time Limit: 1000ms Memory Limit: 65536KB
Input
Output
Sample Input
input | output |
---|---|
0 0 |
2 |
0 0 |
0 |
Hint
题意:求四边形,镜面对称的点;
思路:首先镜面对称,那么点的个数就是一定是偶数倍的。然后既然是镜面对称,那么他的投影点和点的镜面的距离一定是相等的;
转载请注明出处:寻找&星空の孩子
题目链接:Kite:http://www.bnuoj.com/bnuoj/problem_show.php?pid=33563
so......
#include<cstdio>
#include<cmath>
#include<iostream>
#define PI acos(-1.0)
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y){}//构造函数,方便代码编写
}; typedef Point Vector;//Vector只是Point的别名 //向量+向量=向量; 向量+点=点
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} //点-点=向量
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} //向量*数=向量
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} //向量/数=向量
Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} //
bool operator < (const Point& a,const Point& b){return a.x<b.x||(a.x==b.x && a.y<b.y);} //
const double eps = 1e-;
//三态函数
int dcmp(double x){if(fabs(x)<eps)return ;else return x < ? - : ;}
//相等
bool operator == (const Point& a,const Point& b){return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;} //点积 x1*x2+y1*y2
//向量垂直点积为0;
//利用点积,求向量的夹角和长度;
double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/length(A)/length(B));} //叉积 x1*y2-x2*y1
//向量共线叉积为0;
//叉积为三角形有向面积的2倍
//已知三点求三角形面积
double Cross(Vector A,Vector B){return A.x*B.y-B.x*A.y;}
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);} double DistanceToLine(Point P,Point A,Point B)
{
Vector v1=B-A, v2=P-A;
return fabs(Cross(v1,v2))/length(v1);//如果不取绝对值,得到的是有向距离;
} Point GetLineProjection(Point P,Point A,Point B)
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} Point div(Point &A,Point &B)
{
Point E;
E.x=(A.x+B.x)/;
E.y=(A.y+B.y)/;
return E;
}
int main()
{
Point A,B,C,D;
Point AB,BC,CD,DA;
while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y,&D.x,&D.y)!=EOF)
{
AB=div(A,B);
BC=div(B,C);
CD=div(C,D);
DA=div(D,A); // printf("%lf%lf\n%lf%lf\n%lf%lf\n%lf%lf\n",A.x,A.y,B.x,B.y,C.x,C.y,D.x,D.y);
int cnt=;
Point P1,P2,P3,P4;
double x1,x2,x3,x4;
//A--C
P1=GetLineProjection(B,A,C);
P2=GetLineProjection(D,A,C);
x1=DistanceToLine(B,A,C);
x2=DistanceToLine(D,A,C);
if(P1==P2&&x1==x2) cnt+=;
// if(Area2(A,B,C)==Area2(A,D,C)) cnt+=2; //B--D
P1=GetLineProjection(A,B,D);
P2=GetLineProjection(C,B,D);
x1=DistanceToLine(A,B,D);
x2=DistanceToLine(C,B,D);
if(P1==P2&&x1==x2) cnt+=;
// if(Area2(B,A,D)==Area2(B,C,D)) cnt+=2; //BC--DA
P1=GetLineProjection(A,BC,DA);
P2=GetLineProjection(D,BC,DA);
P3=GetLineProjection(B,BC,DA);
P4=GetLineProjection(C,BC,DA);
x1=DistanceToLine(A,BC,DA);
x2=DistanceToLine(D,BC,DA);
x3=DistanceToLine(B,BC,DA);
x4=DistanceToLine(C,BC,DA);
if(P1==P2&&P3==P4&&x1==x2&&x3==x4) cnt+=;
// if(Area2(D,DA,BC)+Area2(D,BC,C)==Area2(A,DA,BC)+Area2(A,BC,B)) cnt+=2; //AB--CD
P1=GetLineProjection(A,AB,CD);
P2=GetLineProjection(B,AB,CD);
P3=GetLineProjection(C,AB,CD);
P4=GetLineProjection(D,AB,CD);
x1=DistanceToLine(A,AB,CD);
x2=DistanceToLine(B,AB,CD);
x3=DistanceToLine(C,AB,CD);
x4=DistanceToLine(D,AB,CD);
if(P1==P2&&P3==P4&&x1==x2&&x3==x4) cnt+=;
// if(Area2(A,AB,CD)+Area2(A,CD,D)==Area2(B,AB,CD)+Area2(B,CD,C)) cnt+=2; printf("%d\n",cnt);
}
return ;
}
Kite(几何+镜面对称)的更多相关文章
- C - Kite URAL - 1963 (几何+四边形判断对称轴)
题目链接:https://cn.vjudge.net/problem/URAL-1963 题目大意:给你一个四边形的n个点,让你判断对称点的个数(对称轴的个数*2). 具体思路:感谢qyn的讲解,具体 ...
- 关于Three.js基本几何形状之SphereGeometry球体学习
一.有关球体SphereGeometry构造函数参数说明 <1>.SphereGeometry(radius, widthSegments, heightSegments, phiStar ...
- 几何服务,cut功能测试
关于几何服务 几何服务用于辅助应用程序执行各种几何计算,如缓冲区.简化.面积和长度计算以及投影.在 ArcGIS Server 管理器中启动几何服务之后,您才能够在应用程序开发过程中使用该服务. 问题 ...
- 几何服务,cut功能,输入要素target(修改后)内容。
几何服务,cut功能测试,输入要素target(修改后)内容. {"displayFieldName":"","fieldAliases": ...
- 几何服务,cut功能,输入要素target(修改前)内容。
几何服务,cut功能测试,输入要素target(修改前)内容. {"geometryType":"esriGeometryPolyline","geo ...
- 如何让你的UWP应用程序无缝调用几何作图
有时候需要编辑一些几何图形,如三角形,圆锥曲线等,在UWP应用中加入这些几何作图功能是件费时间又很难做好的事.其实Windows 10 应用商店中已有一些专业的几何作图工具了,那么能借来一用吗?答案是 ...
- poj 2031Building a Space Station(几何判断+Kruskal最小生成树)
/* 最小生成树 + 几何判断 Kruskal 球心之间的距离 - 两个球的半径 < 0 则说明是覆盖的!此时的距离按照0计算 */ #include<iostream> #incl ...
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- DOM 元素节点几何量与滚动几何量
当在 Web 浏览器中查看 HTML 文档时,DOM 节点被解析,并被渲染成盒模型(如下图),有时我们需要知道一些信息,比如盒模型的大小,盒模型在浏览器中的位置等等,本文我们就来详细了解下元素节点的几 ...
随机推荐
- VS2015 类模板保存位置
如果安装在C盘,则是如下位置: C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\ItemTemplates\CSharp ...
- git cmd 命令在已有的仓库重新添加新的文件夹
正确步骤: 1. git init //初始化仓库 git add .(文件name) //添加文件到本地仓库 git commit -m “first commit” //添加文件描述信息 git ...
- HttpClient Fluent API 高并发优化
apache的httpcomponents-client 4.2之后提供了一套易于使用的facade API称为Fluent API,对于一般使用场景来说,使用起来非常简便,且性能也有一定保证,因为其 ...
- django-celery 创建多个broker队列 异步执行任务时指定队列
一.这里不再详细述说 django 框架中如何使用celery, 重点放在如何实现创建多个队列, 并指定队列存放异步任务 笔者使用 django-celery==3.2.2 模块, 配置项及配置参 ...
- Mac 安装微软雅黑字体
https://www.jianshu.com/p/d8c34fff3483 1.找一台Windows电脑,打开字体文件夹C:\Windows\Fonts. 2.搜索"Calibri.微软雅 ...
- centoos内核升级
1.检查当前CentOS内核版本 uname -r 2.导入key 打开http://elrepo.org/tiki/tiki-index.php 复制执行该命令 3.安装ELRepo 打开2步中的网 ...
- Iptables-redhat/centos
6用iptables 7默认用firewalld firewalld 与 iptables 过滤点,表 做nat是使用postrouting,prerouting表 Samba服务所使用的端口和协议: ...
- 利用SSH反向隧道,连接内网服务器
前言 公司有一台文件服务器(内部使用,无外网IP),上面主要安装了SVN服务,用来存储和共享各部门的文档,因为都是内网,直接远程(mstsc)上去就可以方便维护,但最近公司租了新的办公室,部分员工被分 ...
- iOS开发笔记-Xcode添加pch文件
xcode6以后苹果取消了pch文件,需要自己创建pch文件并手动添加引用. 1.新建pch文件 2.项目Build Settings添加引用 最后检查路径是否正确,编译一下查看是否出现问题. 如果出 ...
- webServlet("/") 和 webServlet("/*") 的区别
“/” 默认放行了jsp,也就是jsp文件不执行下面的service方法,其他都执行 “/*” 全部执行