正则化,L1,L2
机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象。为了减小这种现象带来的影响,采用正则化。正则化,在减小训练样本误差的同时,限制参数的增长,限制参数过多或者过大,从而提高模型的泛化性。
1. L1 正则化
L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值:

2. L2 正则化
L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和:

L1范式和L2范式的区别
(1) L1范式是对应参数向量绝对值之和
(2) L1范式具有稀疏性
(3) L1范式可以用来作为特征选择,并且可解释性较强(这里的原理是在实际Loss function 中都需要求最小值,根据L1的定义可知L1最小值只有0,故可以通过这种方式来进行特征选择)
(4) L2范式是对应参数向量的平方和,再求平方根
(5) L2范式是为了防止机器学习的过拟合,提升模型的泛化能力
L2正则 对应的是加入2范数,使得对权重进行衰减,从而达到惩罚损失函数的目的,防止模型过拟合。保留显著减小损失函数方向上的权重,而对于那些对函数值影响不大的权重使其衰减接近于0。相当于加入一个gaussian prior。
L1正则 对应得失加入1范数,同样可以防止过拟合。它会产生更稀疏的解,即会使得部分权重变为0,达到特征选择的效果。相当于加入了一个laplacean prior。
正则化,L1,L2的更多相关文章
- 机器学习 - 正则化L1 L2
L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...
- 正则化 L1 L2
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- 机器学习之正则化【L1 & L2】
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
- L1,L2范数和正则化 到lasso ridge regression
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数 表示向量xx中非零元素的个数. L1范数 表示向量中非零元素的绝对值之和. L2范数 表 ...
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
随机推荐
- ES6中Set 和 Map用法
JS中Set与Map用法 一.Set 1.基本用法 ES6 提供了新的数据结构 Set.它类似于数组,但是成员的值都是唯一的,没有重复的值. Set 本身是一个构造函数,用来生成 Set 数据结构. ...
- day15,内置函数一
1,复习,如何从生成器里面取值,next(每次取一个值),send(不可以用在第一个,取下一个的时候,给上一个地方传一个值),for(没有break会一直取,直到取完),强制转换(会一次性把数据加载到 ...
- C++提供的四种新式转换--const_cast dynamic_cast reinterpret_cast static_cast
关于强制类型转换的问题,许多书都讨论过,写的最具体的是C++之父的<C++的设计和演化>. 最好的解决方法就是不要使用C风格的强制类型转换,而是使用标准C++的类型转换符:static_c ...
- cds view 创建和调用
cds view 是一个core data service, 能够将数据库表虚拟化为一个虚拟表(double).因为各个使用sap的公司,使用的数据库数据是不同的,所以提供一个数据库的虚拟. 通过向 ...
- 【Python】-NO.97.Note.2.Python -【Python 基本数据类型】
1.0.0 Summary Tittle:[Python]-NO.97.Note.2.Python -[Python 基本数据类型] Style:Python Series:Python Since: ...
- ignore_user_abort(true); set_time_limit(0);程序在本地测试可以一直运行,上传服务器只能运行10-15分钟
当PHP运行在安全模式下时此函数无效.除了关闭安全模式或者在php.ini程序中修改最大运行时间没有其他办法让此函数运行. php.ini 中缺省的最长执行时间是 30 秒,这是由 php.ini 中 ...
- C语言进阶之路(一)----C语言的内存四区模型
内存四区模型:操作系统给C/C++编写的程序分配内存,通常将分配的内存划分为以下四个区域:1.栈区:存放局部变量,用完由操作系统自动释放2.堆区:动态分配给程序的内存区域,由程序员手动释放3.数据区: ...
- linux----------今天又遇到一个奇葩的问题,就是linux文件的权限已经是777了但是还是没有写入权限,按照下面的命令就解决了
查看SELinux状态: 1./usr/sbin/sestatus -v ##如果SELinux status参数为enabled即为开启状态 SELinux status: ...
- day07 Python文件操作
一,文件操作基本流程 #1. 打开文件,得到文件句柄并赋值给一个变量 f=open('a.txt','r',encoding='utf-8') #默认打开模式就为r #2. 通过句柄对文件进行操作 d ...
- shell printf命令:怎样格式化输出语句
printf 命令用于格式化输出, 是echo命令的增强版.它是C语言printf()库函数的一个有限的变形,并且在语法上有些不同. 注意:printf 由 POSIX 标准所定义,移植性要比 ech ...