TensorFlow从0到1之TensorFlow实现简单线性回归(15)
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价。
波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取。
本小节直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。
实现简单线性回归的具体做法
- 导入需要的所有软件包:

- 在神经网络中,所有的输入都线性增加。为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据:

- 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其分解为 X_train 和 Y_train。可以对数据进行归一化处理:

- 为训练数据声明 TensorFlow 占位符:

- 创建 TensorFlow 的权重和偏置变量且初始值为零:

- 定义用于预测的线性回归模型:

- 定义损失函数:

- 选择梯度下降优化器:

- 声明初始化操作符:

- 现在,开始计算图,训练 100 次:

- 查看结果:

解读分析
从下图中可以看到,简单线性回归器试图拟合给定数据集的线性线:

在下图中可以看到,随着模型不断学习数据,损失函数不断下降:

下图是简单线性回归器的 TensorBoard 图:

该图有两个名称范围节点 Variable 和 Variable_1,它们分别是表示偏置和权重的高级节点。以梯度命名的节点也是一个高级节点,展开节点,可以看到它需要 7 个输入并使用 GradientDescentOptimizer 计算梯度,对权重和偏置进行更新:
总结
本节进行了简单的线性回归,但是如何定义模型的性能呢?
有多种方法可以做到这一点。统计上来说,可以计算 R2 或将数据分为训练集和交叉验证集,并检查验证集的准确性(损失项)。
TensorFlow从0到1之TensorFlow实现简单线性回归(15)的更多相关文章
- TensorFlow从0到1之TensorFlow优化器(13)
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...
- TensorFlow从0到1之TensorFlow实现多元线性回归(16)
在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...
- TensorFlow从0到1之TensorFlow Keras及其用法(25)
Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...
- TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...
- TensorFlow从0到1之TensorFlow实现反向传播算法(21)
反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...
- TensorFlow从0到1之TensorFlow常用激活函数(19)
每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...
- TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...
- TensorFlow从0到1之TensorFlow csv文件读取数据(14)
大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...
- TensorFlow从0到1之TensorFlow超参数及其调整(24)
正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...
随机推荐
- (一) Vue在创建的时候 入口文件 及相关的路由配置(及子路由配置)
1. 首先明确一点 在书写之前尽量保持相关的文件知道含义 比如 components 啥的 知道是要放什么东西 在这里介绍一下 由于 vue 不是系统学习 所以很多的创建方式可能不一样 就是有 ...
- 【Java8新特性】面试官:谈谈Java8中的Stream API有哪些终止操作?
写在前面 如果你出去面试,面试官问了你关于Java8 Stream API的一些问题,比如:Java8中创建Stream流有哪几种方式?(可以参见:<[Java8新特性]面试官问我:Java8中 ...
- MySQL8.0 忘记密码、重置密码
修改my.cnf [mysqld] 域中添加skip-grant-tables 重启mysqld服务 systemctl restart mysqld 重新使用空密码登录,直接敲回车 mysql -u ...
- uwsgi+nginx 502 bad get away 错误
用uwsgi和nginx部署网站时有时候访问网站会出现502错误 配置,启动文件等完全没有问题. 目前解决方法是重启uwsgi就可以了(虽然说502错误应该有很多产生原因啦) 所用命令: $ ps - ...
- Chisel3 - model - UserModule commands
https://mp.weixin.qq.com/s/0ECca6XyFyEri0B4ckOZ4A 介绍UserModule类中,如何管理构建硬件模型所需的命令. 1. _comma ...
- 大型可视化项目用什么工具好呢?——不如了解一下阿里云DataV尊享版
随着信息化的发展和进步,可视化大屏开始为社会各行业提供全面应用.目前越来越多的需求显示希望大屏能够更直观的还原出所要展示数据可视化的真实场景,让整个项目更立体.更有科技感,让项目在面对复杂操作时能灵活 ...
- Java实现 LeetCode 709 转换成小写字母(ASCII码处理)
709. 转换成小写字母 实现函数 ToLowerCase(),该函数接收一个字符串参数 str,并将该字符串中的大写字母转换成小写字母,之后返回新的字符串. 示例 1: 输入: "Hell ...
- Java实现 LeetCode 216. 组合总和 III(三)
216. 组合总和 III 找出所有相加之和为 n 的 k 个数的组合.组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字. 说明: 所有数字都是正整数. 解集不能包含重复的组合. ...
- Java实现 洛谷 P1738 洛谷的文件夹
题目描述 kkksc03是个非凡的空想家!在短时间内他设想了大量网页,然后总是交给可怜的lzn去实现. 洛谷的网页端,有很多文件夹,文件夹还套着文件夹. 例如:/luogu/application/c ...
- java中Timer类的详细介绍(详解)
一.概念 定时计划任务功能在Java中主要使用的就是Timer对象,它在内部使用多线程的方式进行处理,所以它和多线程技术还是有非常大的关联的.在JDK中Timer类主要负责计划任务的功能,也就是在指定 ...
