本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价。

波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取。

本小节直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。

实现简单线性回归的具体做法

  1. 导入需要的所有软件包:

  2. 在神经网络中,所有的输入都线性增加。为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据:

  3. 现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其分解为 X_train 和 Y_train。可以对数据进行归一化处理:

  4. 为训练数据声明 TensorFlow 占位符:

  5. 创建 TensorFlow 的权重和偏置变量且初始值为零:

  6. 定义用于预测的线性回归模型:

  7. 定义损失函数:

  8. 选择梯度下降优化器:

  9. 声明初始化操作符:

  10. 现在,开始计算图,训练 100 次:

  11. 查看结果:

解读分析

从下图中可以看到,简单线性回归器试图拟合给定数据集的线性线:


 

在下图中可以看到,随着模型不断学习数据,损失函数不断下降:


 

下图是简单线性回归器的 TensorBoard 图:


 

该图有两个名称范围节点 Variable 和 Variable_1,它们分别是表示偏置和权重的高级节点。以梯度命名的节点也是一个高级节点,展开节点,可以看到它需要 7 个输入并使用 GradientDescentOptimizer 计算梯度,对权重和偏置进行更新:

总结

本节进行了简单的线性回归,但是如何定义模型的性能呢?

有多种方法可以做到这一点。统计上来说,可以计算 R2 或将数据分为训练集和交叉验证集,并检查验证集的准确性(损失项)。

TensorFlow从0到1之TensorFlow实现简单线性回归(15)的更多相关文章

  1. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  2. TensorFlow从0到1之TensorFlow实现多元线性回归(16)

    在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...

  3. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  4. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  5. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  6. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

  7. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  8. TensorFlow从0到1之TensorFlow csv文件读取数据(14)

    大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...

  9. TensorFlow从0到1之TensorFlow超参数及其调整(24)

    正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...

随机推荐

  1. SpringBoot瘦身

    1.介绍 本教程中,我们将研究如何使用spring-boot-thin-launcher项目来将Spring Boot项目瘦身. Spring Boot出了名的把所有依赖打包成单个可执行的Fat JA ...

  2. SpringBoot2.1电商通用(微信+支付宝)支付系统实战

    『课程目录』: ├─第10章 全模块电商系统之商品模块 │      10-1_商品列表-上.mp4 │      10-2_商品列表-中.mp4 │      10-3_商品列表-下.mp4 │  ...

  3. 关于 Git 拉取GitLab工程报错:Repository not found的问题

    [root@localhost xscan]# git pull fatal: repository 'http://gitlab.***.com/***.git/' not found 原因1: 可 ...

  4. 关闭 WordPress 自动更新

    # 方法一 推荐!编辑 WordPress 网站目录下的 wp-config.php 文件,添加如下代码: define( 'AUTOMATIC_UPDATER_DISABLED', true ); ...

  5. 彻底理解JavaScript ES6中的import和export

    0.前言 前端工程,在最早的时候是没有模块的概念的.随着前端工程的发展,前端开发也越来越规范化,更像是软件工程了.那么随之而来的,为了解决工程化的问题,就引入了模块的概念.但是在早期,因为ecmasc ...

  6. [SD心灵鸡汤]002.每月一则 - 2015.06

    1.用最多的梦面对未来 2.自己要先看得起自己,别人才会看得起你 3.一个今天胜过两个明天 4.要铭记在心:每天都是一年中最美好的日子 5.乐观者在灾祸中看到机会:悲观者在机会中看到灾祸 6.有勇气并 ...

  7. CNN卷积神经网络的卷积层、池化层的输出维度计算公式

    卷积层Conv的输入:高为h.宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整. MaxPo ...

  8. win10系统下计算器界面变成英文的解决方法

    标题: win10系统下计算器界面变成英文的解决方法 作者: 梦幻之心星 347369787@QQ.com 标签: [win10, 计算器, 英文] 目录: 软件 日期: 2019-04-20 目录 ...

  9. JS实现PC端URL跳转到对应移动端URL

    在做移动端网站时,有时因技术问题或其他原因无法制作响应式版面,而移动端页面只能放到子目录下,但是手机端通过搜索引擎进入网站电脑端子页面,无法匹配到移动端页面,使得用户体验很不好,即影响排名也影响转化. ...

  10. Typora 使用 Markdown 嵌入 LaTeX 数学公式符号语法

    博客园不支持渲染 LaTeX 数学公式,需要用到什么公式,请复制到您所用的支持 LaTeX 的编辑器中查看实现效果.Typora 可以渲染 LaTeX 数学公式. 目录 行内与独行 行内公式 独行公式 ...