Havel定理 poj1659
http://blog.csdn.net/xcszbdnl/article/details/14174669 代码风格这里的
| Time Limit: 5000MS | Memory Limit: 10000K | |||
| Total Submissions: 9953 | Accepted: 4161 | Special Judge | ||
Description
未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系。
Input
第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N)。
Output
对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。
Sample Input
3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1
Sample Output
YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0 NO YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Frog
{
int pos,deg;
bool operator <(const Frog &F)const
{
return deg>F.deg;
}
} frog[11];
int n;
bool ans[11][11];
bool Havel()
{
for(int i=0; i<n; ++i)
{
sort(frog+1,frog+n);
for(int j=1; j<=frog[i].deg; ++j)
{
if(i+j>=n||frog[i+j].deg==0) return 0;
--frog[i+j].deg;
ans[frog[i].pos][frog[i+j].pos]=ans[frog[i+j].pos][frog[i].pos]=1;
}
}
return 1;
}
int main()
{
int T;
for(scanf("%d",&T); T--;)
{
scanf("%d",&n);
for(int i=0; i<n; ++i)
{
scanf("%d",&frog[i].deg);
frog[i].pos=i;
}
memset(ans,0,sizeof(ans));
if(Havel())
{
puts("YES");
for(int i=0; i<n; ++i)
{
for(int j=0; j<n; ++j)
printf("%d ",ans[i][j]);
puts("");
}
}
else puts("NO");
puts("");
}
}
Havel定理 poj1659的更多相关文章
- POJ1659 Frogs' Neighborhood(Havel定理)
给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Have ...
- Havel定理
先贴一个百度百科的注释 Havel定理编辑 本词条缺少概述.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 Havel定理 外文名 Canisters theorem 特 ...
- LD1-M(简单图的判定+构造,Havel定理)
题目链接 /* *题目大意: *给出一个图的每个点的度的序列,求能否构成一个简单图,如果能构出简单图,则输出图的邻接矩阵; * *算法思想: *Havel定理的应用; *给定一个非负整数序列{dn}, ...
- HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)
主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiya ...
- cdoj913-握手 【Havel定理】
http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others) Memory Limit ...
- POJ 1659 Frogs' Neighborhood (Havel定理构造图)
题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...
- 【Havel 定理】Degree Sequence of Graph G
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...
- UESTC 913 握手 Havel定理+优先队列
给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化. 此题因为是无自环无重边,所以是简单图.用判定简单图可图化 ...
- Havel-Hakimi定理 POJ1659
对于图的所有顶点,计算出每个顶点的度,度序列.给定一个序列判断序列是否可图. #include<cstdio> #include<algorithm> #include< ...
随机推荐
- shell基础知识DAY2
1.管道符(|):把一个命令的输出,把输出的内容传递给管道符后面命令的输入.如:ls -l | grep "^[^d]".2.jobs作业控制,后台运行bg PID,前台运行fg ...
- 用VC实现洪水攻击程序
本文为原创,如需转载,请注明作者和出处,谢谢! 一. 什么是洪水攻击 洪水之猛.势不可挡.如果将洪水比作对计算机的攻击,那大家可以想象得出,攻击是多的猛烈. 在安全领域所指的洪 ...
- 程序员还在用360,腾讯电脑管家清理注册表,清理垃圾?只能说你太low
首先明明电脑上,就有清理垃圾和无用注册表的功能,只是我么缺少发现美的眼睛. 为什么不用360,腾讯全家桶. 那玩意固然香,而且真香,但是后台占用率太高,作为一个有洁癖的我,实在是不想看到自己右下角多一 ...
- 图论--二分图最佳完美匹配(KM模板)
#include <iostream> #include <cstring> #include <cstdio> using namespace std; cons ...
- 多源最短路径算法:Floyd算法
前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...
- Python第三方库之Numpy库
概述 Numpy 最基本的库,是用于处理含有同种元素的多维数组运算的第三方库 —科学计算包,python数据分析及科学计算的基础库,几乎支撑所有其他库 —支持N维数组运算.处理大型矩阵.成熟的广播函 ...
- POJ3169(差分约束:转载)
转载自mengxiang000000传送门 Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10278 Ac ...
- Java常见的集合的数据结构
数据结构 数据结构__栈:先进后出 栈:stack,又称堆栈,它是运算受限的线性表,其限制是仅允许在标的一端进行插入和删除操作,不允许在其他任何位置进行添加.查找.删除等操作. 简单的说:采用该结构的 ...
- 王颖奇 201771010129《面向对象程序设计(java)》第七周学习总结
实验七 继承附加实验 实验时间 2018-10-11 1.实验目的与要求 (1)进一步理解4个成员访问权限修饰符的用途: A.仅对本类可见-private B.对所有类可见-public C.对本包和 ...
- Kubernetes中 Pod 是怎样被驱逐的?
前言 在 Kubernetes 中,Pod 使用的资源最重要的是 CPU.内存和磁盘 IO,这些资源可以被分为可压缩资源(CPU)和不可压缩资源(内存,磁盘 IO).可压缩资源不可能导致 Pod 被驱 ...