【JSOI2016】最佳团体
- 思路:二分答案+动态规划(结合dfs序)
- 类型:选/不选:最大比值
- 代码:
#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
const int N=2505;
int rt=0,k,n,f[N];
double eps=1e-6,v[N],s[N],p[N],dp[N][N],sum;
int tot,head[N],nxt[N*2],to[N*2],size[N],Time,od[N];
void add_edge(int u,int v) {
tot++; nxt[tot]=head[u]; to[tot]=v; head[u]=tot;
}
void dfs(int u) {
size[u]=1;
od[Time++]=u; //某时间戳对应的点u子树[od[time],od[time+size[u]]]
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
dfs(v);
size[u]+=size[v];
}
}
bool check(double ans) {
for(int i=1;i<=n;i++) v[i]=p[i]-s[i]*ans;
for(int i=1;i<=n+1;i++) for(int j=0;j<=k;j++) dp[i][j]=-sum;
dp[1][0]=0.0;
for(int i=1;i<=n;i++) { //time
for(int j=0;j<=min(i,k);j++) {
dp[i+1][j+1]=max(dp[i+1][j+1],dp[i][j]+v[od[i]]); //选这个点
dp[i+size[od[i]]][j]=max(dp[i+size[od[i]]][j],dp[i][j]); //不选,直接跳过该子树
}
}
if(dp[1+n][k]>=0) return true;
return false;
}
double solve(double l,double r) {
double ans,mid;
while(r-l>=eps) {
mid=(l+r)/2;
if(check(mid)) {
ans=mid; l=mid;
}
else r=mid;
}
return ans;
}
int main() {
scanf("%d%d",&k,&n);
for(int i=1;i<=n;i++) {
scanf("%lf%lf%d",&s[i],&p[i],&f[i]);
sum+=p[i];
add_edge(f[i],i);
}
dfs(0);
double ans=solve(0,sum);
printf("%.3lf",ans);
return 0;
}
【JSOI2016】最佳团体的更多相关文章
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划
BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...
- BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...
- [JSOI2016]最佳团体 DFS序/树形DP
题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
- [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序
分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...
- Luogu P4322 [JSOI2016]最佳团体
JZdalao昨天上课讲的题目,话说JSOI的题目是真的不难,ZJOI的题目真的是虐啊! 题意很简单,抽象一下就是:有一棵树,一次只能选从根到某个节点上的链上的所有点,问从中取出k个节点所得到的总价值 ...
- bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...
- 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包
[题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...
随机推荐
- android 布局的android:padding 和android:margin的区别
android:layout_marginLeft指该控件距离边父控件的边距, android:paddingLeft指该控件内部内容,如文本距离该控件的边距. 如: 当按钮分别设置以上两个属性时,得 ...
- ccf颁奖晚会
感想: 首先,十分感谢学校给我们参加比赛的机会,给予我们这次难能可贵的学习机会,第一次在这么大型的赛场中展现自己,我们也不免有些紧张.从最开始在线上进行模型训练,到我们不远千里在江苏进行场地的勘察,到 ...
- CCF201712-2游戏
问题描述 有n个小朋友围成一圈玩游戏,小朋友从1至n编号,2号小朋友坐在1号小朋友的顺时针方向,3号小朋友坐在2号小朋友的顺时针方向,--,1号小朋友坐在n号小朋友的顺时针方向. 游戏开始,从1号小朋 ...
- Column ‘name’ in where clause is ambiguous;
内容 一.异常信息 严重: Servlet.service() for servlet [dispatcherServlet] in context with path [] threw except ...
- JavaScript实现动态表格
运行效果: 源代码: 1 <!DOCTYPE html> 2 <html lang="zh"> 3 <head> 4 <meta char ...
- Spring-Bean依赖注入(引用数据类型和集合数据类型)
为什么使用spring依赖注入详见–>依赖注入分析 1.创建实体类User类 package com.hao.domain; public class User { private String ...
- 如何在 Java 中实现最小生成树算法
定义 在一幅无向图 \(G=(V,E)\) 中,\((u, v)\) 为连接顶点 \(u\) 和顶点 \(v\) 的边,\(w(u,v)\) 为边的权重,若存在边的子集 \(T\subseteq E\ ...
- SQLite 数据库使用记录
SQLite 数据库使用记录 官网 https://www.sqlite.org/index.html 下载地址 https://www.sqlite.org/download.html 参考资料 S ...
- Casdoor + OAuth 实现单点登录 SSO
简介 Casdoor 是一个基于 OAuth 2.0 / OIDC 的中心化的单点登录(SSO)身份验证平台,简单来说,就是 Casdoor 可以帮你解决用户管理的难题,你无需开发用户登录.注册等与用 ...
- 面试突击39:synchronized底层是如何实现的?
想了解 synchronized 是如何运行的?就要先搞清楚 synchronized 是如何实现? synchronized 同步锁是通过 JVM 内置的 Monitor 监视器实现的,而监视器又是 ...