大数据

  • 概述

    • 大数据是新处理模式才能具备更多的决策力,洞察力,流程优化能力,来适应海量高增长率,多样化的数据资产。

  • 大数据面临的问题

    • 怎么存储海量数据(kb,mb,gb,tb,pb,eb,zb)
    • 怎么对数据进行降噪处理(对数据进行清洗,使得数据变废为宝,提取有用的数据,减少不必要的数据资源空间的释放)
  • 处理方案

    • hadoop 是一种分布式文件存储系统来解决存储的问题,其中hdfs用来解决数据存储问题,mapReduce来解决如何进行建造处理
  • hadoop是什么? 

    • 由来?

      • 根据google发布的3篇文章

      1. google File System

      2. Google Bigtable

      3. Google MapReduce   获得启发  hadoop之父 Doug Cutting 用java语言解决大数据所面临的问题

    • 概述
      • hadoop 是apache基金会的一款开源的分布式的基础架构,它实现了高容错率,乃至高吞吐量,低成本,由于hadoop用java语言编写可以用在linux是非常可靠的,hadoop核心设计是hdfs和mapReudce以及Hbase分别对应这又google3篇文章,解决了大数据所面临的问题

        • hdfs 分布式文件存储系统
        • mapreduce 分布式计算框架  只需要少量的java代码 就能实现分布式计算
        • hbase 基于HDFS 的列式存储的NoSql
    • hdfs
      • 分布式文件存储系统,其中有nameNode,dataNode,block,nameNode负责管理着dataNode,dataNode负责接收读写请求和nameNode协调工作,负责block快的创建和复制,nameNode存储着元数据,datanode和block中的映射关系  

    •  nameNode  存储元数据 (用来描述数据的数据),负责管理dataNode 与dataNode 协调
    • dataNode 负责nameNode的读写请求,用来存储数据块的节点,向nameNode报告自己的快信息
    • block 数据快  hdfs 最小默认128mb 为一块,没一块默认有3个副本
    • rack  机架 用来放置存储节点,提高容错率,高吞吐量。优化存储和计算
  •   nameNode和SecondaryNameNode 之间的关系

    fsimage  元数据的备份  会被加载到内存当中去

    edits  读写请求的日志文件

   nameNode 会在启动的时候加载 fsimage  和   edits  ,这2个文件不会凭空出现,所以要格式化nameNode

   当用户在操作文件时,由于edits的增加,导致了nameNode启动会越来越慢,所以就出现了SecondaryNameNode  可以简单来说,他是nameNode的一个副本,当到达检查点的时候,也就是hdfs 默认 1个小时  或者  日志操作量级达到100w条的时候,此时SecondaryNameNode会将fsimage和edits加载过来进行合并,此时,若是有读写请求过来的时候会被加载到一个叫edits-inprogess的文件进行记录读写请求,fsimage和edits合并之后会成为一个新的fsimage,而此时edits-inprogess会改名为edits

    • 小问题  : 为什么 一个块的大小默认是128mb

      • 在hadoop 1x 的时候默认快的大小为64  但是随着硬盘的变大 在hadoop2x的时候 快的大小  变成了128m ,此时默认最佳状态是寻址时间是传输速度的100/1
  •  mapReduce
      • 概念 : 分布式计算框架。用于大规模的数据计算,采用并行计算,充分的利用了dataNode的物理存储机制,采用了(Map)映射(Reduce)规约,他极大的方便了程序员不会分布式并行编程的情况下,将自己的程序运行在分布式系统上 ,思想就是 将一个键值对 放在map 里 然后 使用Reduce 进行统筹规划,保证所有的映射的键值队中每一个共享的键组
    • mapReduce最擅长做的就是分而治之 ;
      • 分    就是把一个庞大复杂的任务分解成若干个简单的任务来处理,简单的任务包含有3层
      1. 相对于原来的数据要大大缩小
      2. 所有的任务中并行计算,且互不干扰
      3. 就近计算原则
      • 治之 Reduce 负责对map计算的结果进行统筹汇总
      • 要实现mapReduce 首先得借助一个资源调度平台  Yarn
  • Yarn
      • 概念 Yarn 作为资源调度平台 ,其中有一个最大的管理者,ResourceManager  负责着资源的统筹分配,还有各个节点的管理着,NodeManager 负责向ResourceManager进行资源状态的报告,在NodeManager 中还有一个 MRAppMaster ,负责 申请计算资源,协调计算任务并和NodeManager一起执行监视任务
      1. ResourceManager  负责对集群的整体资源和计算做统筹规划
      2. NodeManager 管理主机上的计算组员,负责报告自身的状态信息
      3. MRAppMaster  负责向ResourceManager负责申请资源,协调计算任务
      4. YarnChild  做实际的计算任务
      5. Container 计算资源的抽象单位

            

大数据相关概念和hdfs的更多相关文章

  1. 《OD大数据实战》HDFS入门实例

    一.环境搭建 1.  下载安装配置 <OD大数据实战>Hadoop伪分布式环境搭建 2. Hadoop配置信息 1)${HADOOP_HOME}/libexec:存储hadoop的默认环境 ...

  2. 大数据 --> 分布式文件系统HDFS的工作原理

    分布式文件系统HDFS的工作原理 Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数 ...

  3. 大数据小白系列——HDFS(4)

    这里是大数据小白系列,这是本系列的第四篇,来看一个真实世界Hadoop集群的规模,以及我们为什么需要Hadoop Federation. 首先,我们先要来个直观的印象,这是你以为的Hadoop集群: ...

  4. 大数据小白系列——HDFS(3)

    这里是大数据小白系列,这是本系列的第三篇,介绍HDFS中NameNode选举,JournalNode等概念. 上一期我们说到了为解决NameNode(下称NN)单点失败问题,HDFS中使用了双NN的机 ...

  5. 大数据小白系列——HDFS(2)

    这里是大数据小白系列,这是本系列的第二篇,介绍一下HDFS中SecondaryNameNode.单点失败(SPOF).以及高可用(HA)等概念. 上一篇我们说到了大数据.分布式存储,以及HDFS中的一 ...

  6. 大数据小白系列——HDFS(1)

    [注1:结尾有大福利!] [注2:想写一个大数据小白系列,介绍大数据生态系统中的主要成员,理解其原理,明白其用途,万一有用呢,对不对.] 大数据是什么?抛开那些高大上但笼统的说法,其实大数据说的是两件 ...

  7. 大数据入门第六天——HDFS详解

    一.概述 1.HDFS中的角色 Block数据: HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是 ...

  8. 大数据基础总结---HDFS分布式文件系统

    HDFS分布式文件系统 文件系统的基本概述 文件系统定义:文件系统是一种存储和组织计算机数据的方法,它使得对其访问和查找变得容易. 文件名:在文件系统中,文件名是用于定位存储位置. 元数据(Metad ...

  9. Hadoop大数据平台入门——HDFS和MapReduce

    随着硬件水平的不断提高,需要处理数据的大小也越来越大.大家都知道,现在大数据有多火爆,都认为21世纪是大数据的世纪.当然我也想打上时代的便车.所以今天来学习一下大数据存储和处理. 随着数据的不断变大, ...

随机推荐

  1. PMBOK 指南 第二章 项目运行环境

    2.1概述 事业环境因素(EEF)源于项目外部(往往企业外部) 组织过程资产(OPA)源于企业内部 2.2 事业环境因素 项目团队不能控制 2.2.1 组织内部的事业环境因素 组织文化.结构和治理 设 ...

  2. Springboot 错误处理机制

    SpringBoot默认的错误处理机制 即我们常见的白色的ErrorPage页面 浏览器发送的请求头: 如果是其他的请求方式,比如客户端,则相应一个json数据: 原理:是通过 ErrorMvcAut ...

  3. python 内置函数zip,map,三元,lambda表达式

    #内置函数zip(),将多个可迭代对象(集合等)按照顺序进行组合成tuple元祖,放在zip 对象进行存储,: #当参数为空时候,返回空 #如果 zip() 函数压缩的两个列表长度不相等,那么 zip ...

  4. APP 安全测试点概述

    一.安装包测试 1.1 关于反编译   目的是为了保护公司的知识产权和安全方面的考虑等,一些程序开发人员会在源码中硬编码一些敏感信息,如密码.而且若程序内部一些设计欠佳的逻辑,也可能隐含漏洞,一旦源码 ...

  5. java bean 属性验证框架 valid

    项目介绍 java 开发中,参数校验是非常常见的需求. 但是 hibernate-validator 在使用过程中,依然会存在一些问题. 特性 支持 fluent-validation 支持 jsr- ...

  6. Java中的日期与时间

    日期与时间 最常用的几个类,Date.DateFormat.Calendar.Locale Date 1.无参构造方法 //根据当前系统默认的毫秒值创建时间对象 public Date() { thi ...

  7. Tornado 框架

    Tronado为何物 Tornado全称Tornado Web Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使 ...

  8. 测试工程师如何使用 CODING 进行测试管理

    CODING 为您的企业提供从概念到软件开发再到产品发布的全流程全周期软件研发管理,为您的研发团队提供全程助力,帮助研发团队捋清需求.不断迭代.快速反馈并能实时追踪项目进度直到完成.同时 CODING ...

  9. 请求*.html后缀无法返回json数据的问题

    在springmvc中请求*.html不可以返回json数据. 修改web.xml,添加url拦截格式.

  10. 痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(2)- Boot配置(BOOT Pin/eFUSE)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RTyyyy系列MCU的Boot配置. 在上一篇文章 Boot简介 里痞子衡为大家介绍了Boot基本原理以及i.MXR ...