[C3] 正则化(Regularization)
正则化(Regularization - Solving the Problem of Overfitting)
欠拟合(高偏差) VS 过度拟合(高方差)
Underfitting, or high bias, is when the form of our hypothesis function h maps poorly to the trend of the data.
It is usually caused by a function that is too simple or uses too few features.
欠拟合(高偏差):没有很好的拟合训练集数据;
At the other extreme, overfitting, or high variance, is caused by a hypothesis function that fits the available data but does not generalize well to predict new data.
It is usually caused by a complicated function that creates a lot of unnecessary curves and angles unrelated to the data.
过度拟合(高方差):可以很好的拟合训练集数据,但是函数太过庞大,变量太多,且缺少足够多的数据约束该模型(m < n),无法泛化到新的数据样本。
This terminology is applied to both linear and logistic regression. There are two main options to address the issue of overfitting:
两种方法解决过度拟合:
- Reduce the number of features
- Manually select which features to keep
- Use a model selection algorithm (studied later in the course)
- Regularization
- Keep all the features, but reduce the magnitude of parameters \(\theta_j\).
- Regularization works well when we have a lot of slightly useful features.
正则化 - 线性回归代价函数
所有正则化均不包括 \(\theta_0\) 项
\(J(\theta)=\frac{1}{2m} \Bigg[ \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big)^2 + \lambda \sum\limits_{j=1}^n \theta_j^2 \Bigg]\)
向量化表示为(A vectorized implementation is):
\(\overrightarrow{h}=g(X \overrightarrow{\theta})\)
\(J(\theta)=\frac{1}{2m} \cdot \Bigg[ (\overrightarrow{h}-\overrightarrow{y})^T \cdot (\overrightarrow{h}-\overrightarrow{y}) + \lambda \cdot (\overrightarrow{l} \cdot \overrightarrow{\theta}^{.2}) \Bigg]\)
\(\overrightarrow{l} = [0, 1, 1, ...1]\)
代码实现:
m = length(y);
l = ones(1, length(theta)); l(:,1) = 0;
J = 1/(2*m) * ((X * theta - y)' * (X * theta - y) + lambda * (l * (theta.^2));
or
J = 1/(2*m) * ((X * theta - y)' * (X * theta - y) + lambda * (theta'*theta - theta(1,:).^2);
正则化 - 逻辑回归代价函数
所有正则化均不包括 \(\theta_0\) 项
\(J(\theta)=-\frac{1}{m} \sum\limits_{i=1}^m \Bigg[ y^{(i)} \cdot log \bigg(h_\theta(x^{(i)}) \bigg) + (1-y^{(i)}) \cdot log \bigg(1-h_\theta(x^{(i)}) \bigg) \Bigg] + \frac{\lambda}{2m} \sum\limits_{j=1}^n \theta_j^2\)
向量化表示为(A vectorized implementation is):
\(\overrightarrow{h}=g(X \overrightarrow{\theta})\)
\(J(\theta)=\frac{1}{m} \cdot \Big( -\overrightarrow{y}^T \cdot log(\overrightarrow{h}) - (1- \overrightarrow{y})^T \cdot log(1- \overrightarrow{h}) \Big) + \frac{\lambda}{2m} (\overrightarrow{l} \cdot \overrightarrow{\theta}^{.2})\)
\(\overrightarrow{l} = [0, 1, 1, ...1]\)
代码实现:
m = length(y);
l = ones(1, length(theta)); l(:,1) = 0;
J = (1/m)*(-y'*log(sigmoid(X*theta))-(1 - y)'* log(1-sigmoid(X*theta))) + ...
(lambda/(2*m))*(l*(theta.^2));
or
J = (1/m)*(-y'*log(sigmoid(X*theta))-(1 - y)'* log(1-sigmoid(X*theta))) + ...
(lambda/(2*m))*(theta'*theta - theta(1,:).^2);
正则化后的线性回归和逻辑回归梯度下降
所有正则化均不包括 \(\theta_0\) 项
\(\begin{cases} \theta_0:=\theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_0^{(i)} \\ \\ \theta_j:=\theta_j - \alpha \Bigg[ \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_j^{(i)} + \frac{\lambda}{m} \cdot \theta_j \Bigg] \end{cases}\)
向量化表示为(A vectorized implementation is):
\(\frac{1}{m} \cdot \Big( X^T \cdot (\overrightarrow{h} - \overrightarrow{y}) \Big) + \frac{\lambda}{m} \cdot \theta^{'}\)
\(\theta^{'} = \begin{bmatrix} 0\\[0.3em]\theta_1\\[0.3em]\theta_2\\[0.3em].\\[0.3em].\\[0.3em].\\[0.3em]\theta_n \end{bmatrix}\)
代码实现:
reg_theta=theta; reg_theta(1, :) = 0;
grad = (1/m)*(X'*(sigmoid(X*theta) - y)) + (lambda/m)*reg_theta;
最终形式:对 \(\theta_j\) 的梯度下降公式进行整理变形(With some manipulation our update rule can also be represented as):
\(\begin{cases} \theta_0:=\theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_0^{(i)} \\ \\ \theta_j:=\theta_j (1- \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_j^{(i)} \end{cases}\)
对线性回归正规方程进行正则化
所有正则化均不包括 \(\theta_0\) 项
\(1 - \alpha\frac{\lambda}{m}\) will always be less than 1. Intuitively you can see it as reducing the value of \(\theta_j\) by some amount on every update. Notice that the second term is now exactly the same as it was before.
Now let's approach regularization using the alternate method of the non-iterative normal equation.
To add in regularization, the equation is the same as our original, except that we add another term inside the parentheses:
原始形态 \(\overrightarrow{\theta} = (X^TX)^{-1}X^T \overrightarrow{y}\)
正则化后 \(\overrightarrow{\theta} = (X^TX + \lambda L)^{-1}X^T \overrightarrow{y}\)
\(L = \begin{bmatrix} 0&&&&&&\\[0.3em]&1&&&&&\\[0.3em]&&1&&&&\\[0.3em]&&&·&&&\\[0.3em]&&&&·&&\\[0.3em]&&&&&·&\\[0.3em]&&&&&&1\end{bmatrix}\)
L is a matrix with 0 at the top left and 1's down the diagonal, with 0's everywhere else. It should have dimension (n+1)×(n+1).
Intuitively, this is the identity matrix (though we are not including \(x_0\))multiplied with a single real number \(\lambda\).
Recall that if m < n, then \(X^TX\) is non-invertible. However, when we add the term \(\lambda⋅L\), then \(X^TX + \lambda⋅L\) becomes invertible.
程序代码
正则化的特性已经全部添加到了其他练习代码中,如线性回归,逻辑回归,神经网络等。可在其他练习中查看到,如需非正则化,只要将Lambda=0即可。
获取源码以其他文件,可点击右上角 Fork me on GitHub 自行 Clone。
[C3] 正则化(Regularization)的更多相关文章
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- zzL1和L2正则化regularization
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...
- 7、 正则化(Regularization)
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...
- 斯坦福第七课:正则化(Regularization)
7.1 过拟合的问题 7.2 代价函数 7.3 正则化线性回归 7.4 正则化的逻辑回归模型 7.1 过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集( ...
- (五)用正则化(Regularization)来解决过拟合
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...
- [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...
- CS229 5.用正则化(Regularization)来解决过拟合
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...
- 1.4 正则化 regularization
如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则 ...
- 机器学习(五)--------正则化(Regularization)
过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. ...
随机推荐
- 预览本地图片原生js
<!-- 样似总结: 用a标签代替file,做文件上传. 将file进行绝对定位,透明度设置为0:宽度为“上传图片”的宽度,超出部分隐藏. 这样做是为了将file隐藏起来.用a标签代替file ...
- 挑战编程 uva100 3n+1
挑战编程 刘汝佳 的第一道习题 热身题 熟悉下提交格式 题意 #include <iostream> #include <algorithm> using namespace ...
- npm简单实用
npm包管理工具 npm可以理解为前端的maven,一个包的管理工具 1. 查看npm和node版本 node -v npm -v 2. 初始化项目 npm init 默认配置初始化项目 npm in ...
- HTML文件通过jQuery引入其他HTML文件报错has been blocked by CORS policy
HTML通过jQuery引入模板 完整报错 新创建一个chrome快捷方式,命名为chrome-debug 右键属性,在目标后添加参数,原始路径如下 "C:\Program Files (x ...
- 05爬虫-requests模块基础(2)
今日重点: 1.代理服务器的设置 2.模拟登陆过验证码(静态验证码) 3.cookie与session 4.线程池 1.代理服务器的设置 有时候使用同一个IP去爬取同一个网站,久了之后会被该网站服务器 ...
- tinker接入
对于热修复无非就是两大类,一类是tencent代表的classloader模式的,另一类是阿里系代表的底层方面替换. 下面以本人的经验介绍下微信的tinker接入: 命令行接入方式: gradle接入 ...
- 3、Hibernate的多表关联
一.数据库中的表关系: 一对一关系 一个人对应一张身份证,一张身份证对应一个人,一对一关系是最好理解的一种关系,在数据库建表的时候可以将人表的主键放置与身份证表里面,也可以将身份证表的主键放置于人表里 ...
- 17个常见的Python运行时错误
对于刚入门的Pythoner在学习过程中运行代码是或多或少会遇到一些错误,刚开始可能看起来比较费劲.随着代码量的积累,熟能生巧当遇到一些运行时错误时能够很快的定位问题原题.下面整理了常见的17个错误, ...
- Java生鲜电商平台-用户管理的架构与实战
Java生鲜电商平台-用户管理的架构与实战 在电商后台中,用户管理是运营人员管理用户的模块.这里的用户区别于运营人员,会在权限的角色管理中分别阐述.这里的用户包含平台的一般用户,会员用户等.本文将分享 ...
- JQuery Easy UI 1.7官网最新版附1.7API
最新的Easy UI 1.7包括1.7的API已上传至百度云盘,有需要的,请自行下载!!! 使用示例: 注:红色加粗的必须引入!!! <!DOCTYPE html> <html> ...