[C3] 正则化(Regularization)
正则化(Regularization - Solving the Problem of Overfitting)
欠拟合(高偏差) VS 过度拟合(高方差)
Underfitting, or high bias, is when the form of our hypothesis function h maps poorly to the trend of the data.
It is usually caused by a function that is too simple or uses too few features.
欠拟合(高偏差):没有很好的拟合训练集数据;
At the other extreme, overfitting, or high variance, is caused by a hypothesis function that fits the available data but does not generalize well to predict new data.
It is usually caused by a complicated function that creates a lot of unnecessary curves and angles unrelated to the data.
过度拟合(高方差):可以很好的拟合训练集数据,但是函数太过庞大,变量太多,且缺少足够多的数据约束该模型(m < n),无法泛化到新的数据样本。
This terminology is applied to both linear and logistic regression. There are two main options to address the issue of overfitting:
两种方法解决过度拟合:
- Reduce the number of features
- Manually select which features to keep
- Use a model selection algorithm (studied later in the course)
- Regularization
- Keep all the features, but reduce the magnitude of parameters \(\theta_j\).
- Regularization works well when we have a lot of slightly useful features.
正则化 - 线性回归代价函数
所有正则化均不包括 \(\theta_0\) 项
\(J(\theta)=\frac{1}{2m} \Bigg[ \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big)^2 + \lambda \sum\limits_{j=1}^n \theta_j^2 \Bigg]\)
向量化表示为(A vectorized implementation is):
\(\overrightarrow{h}=g(X \overrightarrow{\theta})\)
\(J(\theta)=\frac{1}{2m} \cdot \Bigg[ (\overrightarrow{h}-\overrightarrow{y})^T \cdot (\overrightarrow{h}-\overrightarrow{y}) + \lambda \cdot (\overrightarrow{l} \cdot \overrightarrow{\theta}^{.2}) \Bigg]\)
\(\overrightarrow{l} = [0, 1, 1, ...1]\)
代码实现:
m = length(y);
l = ones(1, length(theta)); l(:,1) = 0;
J = 1/(2*m) * ((X * theta - y)' * (X * theta - y) + lambda * (l * (theta.^2));
or
J = 1/(2*m) * ((X * theta - y)' * (X * theta - y) + lambda * (theta'*theta - theta(1,:).^2);
正则化 - 逻辑回归代价函数
所有正则化均不包括 \(\theta_0\) 项
\(J(\theta)=-\frac{1}{m} \sum\limits_{i=1}^m \Bigg[ y^{(i)} \cdot log \bigg(h_\theta(x^{(i)}) \bigg) + (1-y^{(i)}) \cdot log \bigg(1-h_\theta(x^{(i)}) \bigg) \Bigg] + \frac{\lambda}{2m} \sum\limits_{j=1}^n \theta_j^2\)
向量化表示为(A vectorized implementation is):
\(\overrightarrow{h}=g(X \overrightarrow{\theta})\)
\(J(\theta)=\frac{1}{m} \cdot \Big( -\overrightarrow{y}^T \cdot log(\overrightarrow{h}) - (1- \overrightarrow{y})^T \cdot log(1- \overrightarrow{h}) \Big) + \frac{\lambda}{2m} (\overrightarrow{l} \cdot \overrightarrow{\theta}^{.2})\)
\(\overrightarrow{l} = [0, 1, 1, ...1]\)
代码实现:
m = length(y);
l = ones(1, length(theta)); l(:,1) = 0;
J = (1/m)*(-y'*log(sigmoid(X*theta))-(1 - y)'* log(1-sigmoid(X*theta))) + ...
(lambda/(2*m))*(l*(theta.^2));
or
J = (1/m)*(-y'*log(sigmoid(X*theta))-(1 - y)'* log(1-sigmoid(X*theta))) + ...
(lambda/(2*m))*(theta'*theta - theta(1,:).^2);
正则化后的线性回归和逻辑回归梯度下降
所有正则化均不包括 \(\theta_0\) 项
\(\begin{cases} \theta_0:=\theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_0^{(i)} \\ \\ \theta_j:=\theta_j - \alpha \Bigg[ \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_j^{(i)} + \frac{\lambda}{m} \cdot \theta_j \Bigg] \end{cases}\)
向量化表示为(A vectorized implementation is):
\(\frac{1}{m} \cdot \Big( X^T \cdot (\overrightarrow{h} - \overrightarrow{y}) \Big) + \frac{\lambda}{m} \cdot \theta^{'}\)
\(\theta^{'} = \begin{bmatrix} 0\\[0.3em]\theta_1\\[0.3em]\theta_2\\[0.3em].\\[0.3em].\\[0.3em].\\[0.3em]\theta_n \end{bmatrix}\)
代码实现:
reg_theta=theta; reg_theta(1, :) = 0;
grad = (1/m)*(X'*(sigmoid(X*theta) - y)) + (lambda/m)*reg_theta;
最终形式:对 \(\theta_j\) 的梯度下降公式进行整理变形(With some manipulation our update rule can also be represented as):
\(\begin{cases} \theta_0:=\theta_0 - \alpha \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_0^{(i)} \\ \\ \theta_j:=\theta_j (1- \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum\limits_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) \cdot x_j^{(i)} \end{cases}\)
对线性回归正规方程进行正则化
所有正则化均不包括 \(\theta_0\) 项
\(1 - \alpha\frac{\lambda}{m}\) will always be less than 1. Intuitively you can see it as reducing the value of \(\theta_j\) by some amount on every update. Notice that the second term is now exactly the same as it was before.
Now let's approach regularization using the alternate method of the non-iterative normal equation.
To add in regularization, the equation is the same as our original, except that we add another term inside the parentheses:
原始形态 \(\overrightarrow{\theta} = (X^TX)^{-1}X^T \overrightarrow{y}\)
正则化后 \(\overrightarrow{\theta} = (X^TX + \lambda L)^{-1}X^T \overrightarrow{y}\)
\(L = \begin{bmatrix} 0&&&&&&\\[0.3em]&1&&&&&\\[0.3em]&&1&&&&\\[0.3em]&&&·&&&\\[0.3em]&&&&·&&\\[0.3em]&&&&&·&\\[0.3em]&&&&&&1\end{bmatrix}\)
L is a matrix with 0 at the top left and 1's down the diagonal, with 0's everywhere else. It should have dimension (n+1)×(n+1).
Intuitively, this is the identity matrix (though we are not including \(x_0\))multiplied with a single real number \(\lambda\).
Recall that if m < n, then \(X^TX\) is non-invertible. However, when we add the term \(\lambda⋅L\), then \(X^TX + \lambda⋅L\) becomes invertible.
程序代码
正则化的特性已经全部添加到了其他练习代码中,如线性回归,逻辑回归,神经网络等。可在其他练习中查看到,如需非正则化,只要将Lambda=0即可。
获取源码以其他文件,可点击右上角 Fork me on GitHub 自行 Clone。
[C3] 正则化(Regularization)的更多相关文章
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- zzL1和L2正则化regularization
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...
- 7、 正则化(Regularization)
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...
- 斯坦福第七课:正则化(Regularization)
7.1 过拟合的问题 7.2 代价函数 7.3 正则化线性回归 7.4 正则化的逻辑回归模型 7.1 过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集( ...
- (五)用正则化(Regularization)来解决过拟合
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...
- [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...
- CS229 5.用正则化(Regularization)来解决过拟合
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...
- 1.4 正则化 regularization
如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则 ...
- 机器学习(五)--------正则化(Regularization)
过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. ...
随机推荐
- 7.8 Structured Streaming
一.Spark流计算组件的演进 二.Structured Streaming的基本原理 Structured Streaming将数据建模成一个结构化的数据表DataFrame,后到达的数据就是一 ...
- JAVA实现二维码生成加背景图
pom.xml依赖 <!-- 二维码生成 --> <!-- https://mvnrepository.com/artifact/com.google.zxing/c ...
- cf 之lis+贪心+思维+并查集
https://codeforces.com/contest/1257/problem/E 题意:有三个集合集合里面的数字可以随意变换位置,不同集合的数字,如从第一个A集合取一个数字到B集合那操作数+ ...
- Docker安装MySQL 8.0并挂载数据及配置文件
安装部署环境 Ubuntu 18.04.3 LTS Docker 19.03.2 MySQL latest(8.0.17) 下载镜像 # docker从仓库中拉取最新版的mysql镜像,如果没加标签的 ...
- golang--海量用户即使通讯系统
功能需求: 用户注册 用户登录 显示在线用户列表 群聊 点对点聊天 离线留言
- PHP中生成随机字符串,数字+大小写字母随机组合
简单的生成随机字符串: /* * 生成随机字符串 * * $length 字符串长度 */ function random_str($length) { // 密码字符集,可任意添加你需要的字符 $c ...
- javascript 模块化 (切记:学习思想)
模块化(切记:学习思想) 如果不用模块化编写代码,那么会具有以下问题: 代码杂乱无章,没有条理性,不便于维护,不便于复用 很多代码重复.逻辑重复 全局变量污染 不方便保护私有数据(闭包) 模块化的基本 ...
- Python中文件操作2——shutil模块
1 文件操作 文件有很多的操作,之前的文件操作中介绍了内建函数对文件的打开.读取以及写入,这三种操作是对文件基本的使用.文件还有复制.删除.移动.改变文件的属主属组等操作.下面主要看os模块和shut ...
- Python Turtle绘画初学编程——六芒星,浪形圈
老师上课说可以自学一下python中的绘图turtle,就自己初步学习了一下,做了两个简单的绘图——六芒星和浪形圈(其实我也不知道该叫它什么,就照样子编了个词
- 2018-2-13-win10-uwp-切换主题
原文:2018-2-13-win10-uwp-切换主题 title author date CreateTime categories win10 uwp 切换主题 lindexi 2018-2-13 ...