题目网址:http://poj.org/problem?id=1753

题目:

Flip Game

Description

Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the other one is black and each piece is lying either it's black or white side up. Each round you flip 3 to 5 pieces, thus changing the color of their upper side from black to white and vice versa. The pieces to be flipped are chosen every round according to the following rules: 
  1. Choose any one of the 16 pieces.
  2. Flip the chosen piece and also all adjacent pieces to the left, to the right, to the top, and to the bottom of the chosen piece (if there are any).

Consider the following position as an example:

bwbw 
wwww 
bbwb 
bwwb 
Here "b" denotes pieces lying their black side up and "w" denotes pieces lying their white side up. If we choose to flip the 1st piece from the 3rd row (this choice is shown at the picture), then the field will become:

bwbw 
bwww 
wwwb 
wwwb 
The goal of the game is to flip either all pieces white side up or all pieces black side up. You are to write a program that will search for the minimum number of rounds needed to achieve this goal. 

Input

The input consists of 4 lines with 4 characters "w" or "b" each that denote game field position.

Output

Write to the output file a single integer number - the minimum number of rounds needed to achieve the goal of the game from the given position. If the goal is initially achieved, then write 0. If it's impossible to achieve the goal, then write the word "Impossible" (without quotes).

Sample Input

bwwb
bbwb
bwwb
bwww

Sample Output

4

思路:

棋盘只有4*4即16格,我们把这16格的白棋黑棋状态分别用1,0表示,就可以用十进制的0——(2^16-1即65535)表示所有情况。利用0^1=1,1^1=0,0^0=0即无论0,1与0做^运算都等于其本身,无论0,1与1做^运算都等于另一个数的特性,我们将翻转棋子操作,变成将选定棋子和四周的棋子的状态^1,其余棋子状态^0。再用bfs进行搜索,用vis数组标记当前棋盘情况是否出现过,未出现则将当前情况入队,反之则不入。

代码:
 #include <cstdio>
#include <vector>
#include <queue>
using namespace std;
int vis[];
int mp[]={//预处理,事先算出翻转16个棋子 分别对应的"^"操作数
,,,,
,,,,
,,,,
,,,
};
char chess[][];
vector<int>v;
queue<int>q;
int change(){//将棋盘的初始状态压缩
int x=v[];
for (int i=; i<v.size(); i++) {
x=(x<<)+v[i];
}
return x;
}
int bfs(int v){
vis[v]=;
q.push(v);
while (!q.empty()) {
int x=q.front();q.pop();
if(x== || x== ) return vis[x]-;//x==0时,棋子全为黑面朝上,x==65535时,棋子全为白面朝上。vis数组保存的是当前步数+1
for (int i=; i<; i++) {//分别翻转16个棋子
int xt=x^mp[i];
if(vis[xt]) continue;
vis[xt]=vis[x]+;
q.push(xt);
}
}
return -;
}
int main(){
for (int i=; i<; i++) {
gets(chess[i]);
for (int j=; j<; j++) {
if(chess[i][j]=='b') v.push_back();
else v.push_back();
}
}
int x=bfs(change());
if(x!=-) printf("%d\n",x);
else printf("Impossible\n");
return ;
}

POJ 1753 Flip Game(状态压缩+BFS)的更多相关文章

  1. POJ 1753 Flip Game 状态压缩,暴力 难度:1

    Flip Game Time Limit: 1000MS  Memory Limit: 65536K  Total Submissions: 4863  Accepted: 1983 Descript ...

  2. POJ - 1324 Holedox Moving (状态压缩+BFS/A*)

    题目链接 有一个n*m(1<=n,m<=20)的网格图,图中有k堵墙和有一条长度为L(L<=8)的蛇,蛇在移动的过程中不能碰到自己的身体.求蛇移动到点(1,1)所需的最小步数. 显然 ...

  3. POJ 3411 Paid Roads (状态压缩+BFS)

    题意:有n座城市和m(1<=n,m<=10)条路.现在要从城市1到城市n.有些路是要收费的,从a城市到b城市,如果之前到过c城市,那么只要付P的钱, 如果没有去过就付R的钱.求的是最少要花 ...

  4. poj 1753 Flip Game 枚举(bfs+状态压缩)

    题目:http://poj.org/problem?id=1753 因为粗心错了好多次……,尤其是把1<<15当成了65535: 参考博客:http://www.cnblogs.com/k ...

  5. 枚举 POJ 1753 Flip Game

    题目地址:http://poj.org/problem?id=1753 /* 这题几乎和POJ 2965一样,DFS函数都不用修改 只要修改一下change规则... 注意:是否初始已经ok了要先判断 ...

  6. 胜利大逃亡(续)(状态压缩bfs)

    胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. poj 1753 Flip Game(bfs状态压缩 或 dfs枚举)

    Description Flip game squares. One side of each piece is white and the other one is black and each p ...

  8. POJ 1753 Flip Game (状态压缩 bfs+位运算)

    Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 square ...

  9. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

随机推荐

  1. sudo apt-get install 、 pip install和conda install的对比

    sudo apt-get install: apt-get可以用来安装软件.更新源,也可以用来更新自Ubuntu的典型依赖包. (sudo apt-get remove --purge 软件名称 su ...

  2. DirectX12 3D 游戏开发与实战第三章内容

    变换 学习目标 理解如何使用矩阵表示线性变换和仿射变换 学习对几何体进行缩放.旋转和平移的坐标变换 根据矩阵之间的乘法运算性质,将多个变换矩阵合并为一个单独的净变换矩阵 找寻不同坐标系之间的坐标转换方 ...

  3. Linux之文件与目录管理

    加油!

  4. 【全网首创】修改 Ext.ux.UploadDialog.Dialog 源码支持多选添加文件,批量上传文件

    公司老框架的一个页面需要用到文件上传,本以为修改一个配置参数即可解决,百度一番发现都在说这个第三方插件不支持文件多选功能,还有各种各样缺点,暂且不讨论这些吧.先完成领导安排下来的任务. 任务一:支持多 ...

  5. [VB.NET Tips]再谈字符串连接之内置池

    CLR自动维护一个称为"内置池"(暂存池)(intern pool)的表,在编译时此表包含程序中声明的每个唯一的字符串常量的单个实例,以及以编程方式创建的String类的任何唯一实 ...

  6. 客户端与服务端的事件watcher源码阅读

    watcher存在的必要性 举个特容易懂的例子: 假如我的项目是基于dubbo+zookeeper搭建的分布式项目, 我有三个功能相同的服务提供者,用zookeeper当成注册中心,我的三个项目得注册 ...

  7. 修改zabbix的端口号

    1.前言 zabbix-server的默认端口号是10051.如果存在端口号冲突,需要更改端口号. 以下为更改端口号的步骤. 2.更改配置文件  通常用安装包,也就是yum方式部署的话,其默认的配置文 ...

  8. Python学习-列表深浅拷贝

    一.先看一个简单的赋值语句 lst1 = ['France', 'Belgium', 'England'] lst2 = lst1 # lst1.append('Uruguay') lst2.appe ...

  9. Postman 之 HTTP Multipart/form-data 调试

    无论是前端,还是后端开发,HTTP 接口的使用率实在是太高了.开发好了特定的 HTTP 接口,没有一个好的测试工具,怎么可以呢? 而 Postman 就是一款好用的爱不释手的测试工具,谁用谁说爽. 接 ...

  10. mysql安装可能遇到的错误和安装过程

    http://jingyan.baidu.com/article/8ebacdf02e392a49f65cd52d.html