ZOJ Problem Set - 3822

Domination


Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= N, M <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2

Sample Output

3.000000000000
2.666666666666

Author: JIANG, Kai

Source: The 2014 ACM-ICPC Asia Mudanjiang Regional Contest

题意:n*m的棋盘中,每下一个棋子会把棋子所在位置的x,y轴覆盖

每天放一个棋子,问所需天数的期望

dp[k][i][j]表上k天覆盖了i条x轴,j条y轴的概率

dp[k][i][j]=dp[k-1][i-1][j-1]*t1+dp[k-1][i][j-1]*t2+dp[k-1][[i][j-1]*t3+dp[k-1][i][j]*t4;

t1 t2 t3 t4对应的概率

特别注意的是只有当i<n||j<m 的时候 dp[k-1][i][j]才有效

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<cstring>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<algorithm>
#include<string.h>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const double eps=0.0000000001;
const int N=+;
const ll mod=1e9+;
double dp[N*N][N][N];
int main(){
int n,m;
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(dp,,sizeof(dp));
dp[][][]=;
for(int k=;k<=n*m;k++){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
double t1=,t2=,t3=,t4=;
double tt=n*m-k+;
t1=1.0*(n*m-(i-)*m-(j-)*(n-i+))/(tt);
t2=1.0*(n*j-(i-)*j)/(tt);
t3=1.0*(m*i-(j-)*i)/(tt);
t4=1.0*(i*j-k+)/(tt);
dp[k][i][j]+=dp[k-][i-][j-]*t1;
dp[k][i][j]+=dp[k-][i-][j]*t2;
dp[k][i][j]+=dp[k-][i][j-]*t3;
if(i<n||j<m)
dp[k][i][j]+=dp[k-][i][j]*t4;
}
}
}
double ans=;
for(int i=;i<=n*m;i++){
ans=ans+dp[i][n][m]*i;
}
printf("%.11f\n",ans);
}
}

zoj 3822(概率dp)的更多相关文章

  1. zoj 3822 概率dp

    /* 题目大意:一个n*m的棋盘,每天放一个棋子,每行每列至少有一个棋子时结束.求达到每行每列至少有一个棋子的天数的数学期望. */ #include <iostream> #includ ...

  2. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  3. ZOJ 3822 可能性DP

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3822 本场比赛之前,我记得.见WALK概率路DP称号.那么它应该是可以考虑 ...

  4. zoj 3329 概率dp

    题意:有三个骰子,分别有k1,k2,k3个面.每个面值为1--kn每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和.当分数大于n时结束.求游戏的期望步数.初始分数为0 链接 ...

  5. zoj 3640 概率dp

    题意:一只吸血鬼,有n条路给他走,每次他随机走一条路,每条路有个限制,如果当时这个吸血鬼的攻击力大于等于某个值,那么就会花费t天逃出去,否则,花费1天的时间,并且攻击力增加,问他逃出去的期望 用记忆化 ...

  6. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  7. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  8. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  9. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

随机推荐

  1. PHP实现定时任务的几种方式

    关于定时任务,之前以前认识了一种最常用的:crontab定时任务.通过linux的定时任务去实现.今天又认识了一下php实现定时方式的其它方式,总结一下. 一 服务器定时任务 服务器定时任务,其实就是 ...

  2. c++基础_特殊回文数

    #include <iostream> using namespace std; int main(){ int n; cin>>n; ;i<;i++){ int tem ...

  3. Python之字符串计算(计算器)

    Python之字符串计算(计算器) import re expression = '-1-2*((60+2*(-3-40.0+42425/5)*(9-2*5/3+357/553/3*99/4*2998 ...

  4. python爬虫入门01:教你在 Chrome 浏览器轻松抓包

    通过 python爬虫入门:什么是爬虫,怎么玩爬虫? 我们知道了什么是爬虫 也知道了爬虫的具体流程 那么在我们要对某个网站进行爬取的时候 要对其数据进行分析 就要知道应该怎么请求 就要知道获取的数据是 ...

  5. 集训第五周 动态规划 K题 背包

    K - 背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  6. C语言判断一个数能否被3和5整除

    #include <stdio.h> /* 判断一个数能不能同时被3和5整除 --------soulsjie 20170525----- */ void main(){ int inpu ...

  7. codeforces 362B

    #include<stdio.h> #include<stdlib.h> int cmp(const void *a,const void *b) { return *(int ...

  8. systemtap 作用-- SystemTap使用技巧

    http://blog.csdn.net/wangzuxi/article/details/42849053

  9. Analyzing Storage Performance using the Windows Performance Analysis ToolKit (WPT)

    https://blogs.technet.microsoft.com/robertsmith/2012/02/07/analyzing-storage-performance-using-the-w ...

  10. rsyslog trouble shooting

    openstack,swift的log不输出了.trouble shooting过程 , 发现我们的程序 /var/log/swift/proxy.log等总是不输出log. 因为log rsyslo ...