Contest Website : atcoder.jp/contests/dp

\[\begin{array}{c|C|c|c}
TaskNum & TaskName & Status & Algorithm \\
\hline
A & Frog 1 & \color{green}{AC} & \text{简单线性DP} \\
\hline
B & Frog 2 & \color{green}{AC} & \text{简单线性DP,TaskA加强版} \\
\hline
C & Vacation & \color{green}{AC} & \text{简单线性DP} \\
\hline
D & Knapsack 1 & \color{green}{AC} & \text{OI背包} \\
\hline
E & Knapsack 2 & \color{yellow}{WA} & \text{01背包重大价小} \\
\hline
F & LCS & \color{green}{AC} & \text{最长公共子序列} \\
\hline
G & Longest Path & \color{green}{AC} & \text{DAG上DP} \\
\hline
H & Grid 1 & \color{green}{AC} & \text{矩阵DP} \\
\hline
I & Coins & \color{green}{AC} & \text{概率DP} \\
\hline
J & Sushi & \color{green}{AC} & \text{期望DP} \\
\hline
K & Stones & \color{green}{AC} & \text{博弈论} \\
\hline
L & Deque & \color{green}{AC} & \text{区间DP} \\
\hline
M & Candies & \color{green}{AC} & \text{前缀和优化线性DP} \\
\hline
N & Slimes & \color{green}{AC} & \text{区间DP} \\
\hline
O & Matching & \color{green}{AC} & \text{状压DP} \\
\hline
P & Independent Set & \color{green}{AC} & \text{树形DP} \\
\hline
Q & Flowers & & \\
\hline
R & Walk & & \\
\hline
S & Digit Sum & & \\
\hline
T & Permutation & & \\
\hline
U & Grouping & & \\
\hline
V & Subtree & & \\
\hline
W & Intervals & & \\
\hline
X & Tower & & \\
\hline
Y & Grid 2 & & \\
\hline
Z & Frog 3 & & \\
\end{array}
\]

A. Frog 1

We define \(f_i\) as the minimum cost for the frog to jump from the 1st stone to the \(i\)-th stone.

And we know that the frog can only jump from the \((i-1)\)-th stone or the \((i-2)\)th stone to the \(i\)-th stone. Thus, we can know the equation. It is:

\[f_i=\operatorname{min}\{f_{i-1}+\left\vert h_i-h_{i-1} \right\vert ,f_{i-2}+\left\vert h_i-h_{i-2} \right\vert \}
\]

\(O(n)\) ~

B. Frog 2

\[f_{i+j}=\operatorname{min}\{f_i+\left\vert h_i-h_{i+j}\ \right\vert\},1\le j\le k
\]

Why don't I use \(f_{i-j}\) to transfer to \(f_i\)? That's because I don't want to check if \(i-j < 0\). I think this is an unimportant skill

\(O(nk)\)

C. Vacation

Easy~

We define \(f_{i,j}\) is the maximum points of happiness at Day i, and we choose activity j at Day i. We cannot choose activity j at Day i+1.

So, \(f_{i,j}\) can be transfered from \(f_{i-1,k}\, ,k\neq j\).

\[f_{i,1} = \operatorname{max}\{f_{i-1,2},f_{i-1,3}\} + a_i
\]
\[f_{i,2} = \operatorname{max}\{f_{i-1,1},f_{i-1,3}\} + b_i
\]
\[f_{i,3} = \operatorname{max}\{f_{i-1,1},f_{i-1,2}\} + c_i
\]

The answer is \(\operatorname{max}\{f_{n,1},f_{n,2},f_{n,3}\}\).

\(O(n)\) ~

D. Knapsack 1

01 backpack.

Because I cannot explain it in English, so I will only write the equation.

\(i\) is the i-th item, \(v\) refers to the remaining capacity.

\[f_{v}=\operatorname{max}\{f_v,f_{v-w_i}+c_i\}
\]

\(O(nw)\)

F. LCS

嘤语不会用了QAQ

定义 \(f_{i,j}\) 为 \(s\) 串前 \(i\) 个字符和 \(t\) 串前 \(j\) 个字符的LCS。

\[f_{i,j}=\begin{cases}
f_{i-1,j-1}+1, & s_i=t_j \\
\operatorname{max}\{f_{i-1,j},f_{i,j-1}\}, &\text{otherwise}
\end{cases} \]

\(O(n^2)\)

G. Longest Path

We have two methods to solve this task.

First, we use Topological sorting. Then, we can traverse the topological order from back to front.

Second, we can use the memorizing search method.

\[f_{i}=\operatorname{max}\{f_{j}+1\}
\]

\(O(n+m)\)

H. Grid 1

Matrix DP.

We can walk to the right and the bottom point.

So, we can walk from the left and the top point.

\[f_{i,j}=f_{i-1,j}+f{i,j-1}
\]

\(O(HW)\)

I. Coins

Probability DP.

We define f[i][j] is the probability of \(j\) out of the first \(i\) coins turned heads.

So, if we need \(j\) coins turns heads, we have \(2\) options.

  1. There are \(j\) out of the first \(i - 1\) coins turned heads and the i-th coin flip to the back.
  2. There are \(j - 1\) out of the first \(i - 1\) coins turned heads and the i-th coin turn to the front.
\[f_{i,j}=f_{i-1,j} * (1-p_i) + f_{i-1,j-1}*p_i
\]

\(O(n^2)\)

J. Sushi

求期望。

设 \(f_{i,j,k}\) 为还剩 \(i\) 个盘子有一个寿司,\(j\) 个盘子有两个寿司,\(k\) 个盘子有三个寿司时的期望值。

方程不会写。

\(O(n^3)\)

K. Stones

Game theory.

If there left \(k\) stones left and this state can win, then there must a state of \(f\) that \(k-a_i=f\) and this state must lose.

\[f_{i} = 1, f_{i - a_j} = 0\; and\;1 \le j \le n
\]

L. Deque

The first type of Range DP.

We define \(f_{i,j}\) as the maximum value the first people can get in the range \([i,j]\).

So, \(f_{i,j}\) can be translated from \(f_{i+1,j}\) and \(f_{i,j-1}\).

\[f_{i,j}=\sum_{i-1}^{j} a_i - \operatorname{min}\{f_{i+1,j},f_{i,j-1}\}
\]

\(O(n^2)\)

M. Candies

Prefix Sum Optimization.

First, we all know that

\[f_{i,j}=\sum_{k=j-a_i}^{j} f_{i,k}
\]

But the time complexity of this algorithm is \(O(nk^2)\), So we cannot pass this task with this algo.

So we need Prefix Sum Optimization. We define \(pre_{m}\) as \(\sum_{k=1}^{m}f_{i,k}\).

\[f_{i,j}=pre_j-pre_{j-a_i-1}
\]

Sth about Educational DP Contest的更多相关文章

  1. Atcoder Educational DP Contest

    前面简单一点的题直接过吧. A 暴力DP B 怎么还是暴力DP C 还是暴力DP D 直接背包 E 这个背包不太一样了,这里有一个技巧,就是因为价值很小,所以直接对价值背包,求出来达到某一个权值最小的 ...

  2. Atcoder Educational DP Contest 题解

    A - Frog 1/B - Frog 2 入门... #include<cstdio> #define abs(a) ((a)>=0?(a):(-(a))) #define min ...

  3. Atcoder Educational DP Contest I - Coins (概率DP)

    题意:有\(n\)枚硬币,每枚硬币抛完后向上的概率为\(p[i]\),现在求抛完后向上的硬币个数大于向下的概率. 题解:我们用二维的\(dp[i][j]\)来表示状态,\(i\)表示当前抛的是第\(i ...

  4. Educational DP Contest H - Grid 1 (DP)

    题意:有一个\(n\)X\(m\)的图,"#"表示障碍物,"."表示道路,只能向右或向下走,问从左上角走到右下角的方案数. 题解:这题可以用bfs来搞,但dp更 ...

  5. Educational DP Contest G - Longest Path (dp,拓扑排序)

    题意:给你一张DAG,求图中的最长路径. 题解:用拓扑排序一个点一个点的拿掉,然后dp记录步数即可. 代码: int n,m; int a,b; vector<int> v[N]; int ...

  6. Educational DP Contest F - LCS (LCS输出路径)

    题意:有两个字符串,求他们的最长公共子序列并输出. 题解:首先跑个LCS记录一下dp数组,然后根据dp数组来反着还原路径,只有当两个位置的字符相同时才输出. 代码: char s[N],t[N]; i ...

  7. Educational DP Contest E - Knapsack 2 (01背包进阶版)

    题意:有\(n\)个物品,第\(i\)个物品价值\(v_{i}\),体积为\(w_{i}\),你有容量为\(W\)的背包,求能放物品的最大价值. 题解:经典01背包,但是物品的最大体积给到了\(10^ ...

  8. 【DP】Educational DP Contest

    这份 dp 题单的最后几题好难 orz. 前面的题比较简单,所以我会选取一些题来讲,其它的直接看代码理解吧 qwq. 传送门: https://atcoder.jp/contests/dp 全部 AC ...

  9. AtCoder Educational DP Contest 总结

    前言 感觉都初一升初二了,再做这个题是不是有点太菜了啊-- 里面大概都是些 DP 板子题(确信,题目质量还挺高的,不过不涉及太难的优化(实际上只有最后一题是斜率优化). 不管了,还是写个 blog 来 ...

随机推荐

  1. Docker笔记--ubuntu安装docker

    Docker笔记--ubuntu安装docker 1.更换国内软件源,推荐中国科技大学的源,稳定速度快(可选) sudo cp /etc/apt/sources.list /etc/apt/sourc ...

  2. Windows批处理文件编写宝典

    原贴:批处理新手入门导读 现在的教程五花八门,又多又杂.如何阅读,从哪里阅读,这些问题对新手来说,都比较茫然. 这篇文章的目的就是帮助新手理清学习顺序,快速入门.进步 1.如果你从来没有接触甚至没有听 ...

  3. Qt Creator配置clang-format格式化代码插件

    clang-format是一种格式化代码的插件,可用于格式化C / C ++ / Java / JavaScript / Objective-C / Protobuf / C#代码.而Qt Creat ...

  4. excel VBA构造函数就是这么简单

    Function test(a As Integer)'构造函数名字为test参数为a且为int型  If a >= 90 Then     Debug.Print "优秀" ...

  5. 11、gitlab和Jenkins整合(2)

    5.补充: (1)构建说明: 1)Jenkins会基于一些处理器任务后,构建发布一个稳健指数 (从0-100 ),这些任务一般以插件的方式实现. 2)它们可能包括单元测试(JUnit).覆盖率(Cob ...

  6. 30、css介绍

    30.1.css概述: css是Cascading Style Sheet的简称,中文称为层叠样式表,是用来控制网页数据表现的,可以 使网页的表现与数据内容分离: 30.2.css的四种引入方式: 1 ...

  7. Redis 实战篇:GEO助我邂逅附近女神

    码老湿,阅读了你的巧用数据类型实现亿级数据统计之后,我学会了如何游刃有余的使用不同的数据类型(String.Hash.List.Set.Sorted Set.HyperLogLog.Bitmap)去解 ...

  8. Docker部署Mysq集群

    1.PXC(Percona XtraDB Cluster) 速度慢 但能保证强一致性 适用于保存价值较高的数据 数据同步是双向的 在任一节点写入数据 都会同步到其他所有节点 在任何节点上都能同时读写 ...

  9. Linux | 管首命令符号

    简介 管道的意思,在我们日常生活中,意思就是运输一个东西,到下一个地方,所以说 管道命令符 的使用也是差不多的,也是运送一段数据到下一个地方,格式:命令A | 命令B | 命令C .... 所以说,管 ...

  10. ZSH主题

    All the current themes can be found in the themes/ directory in the oh-my-zsh distribution. See list ...