有(x+y)n!=xy。套路地提出x和y的gcd,设为d,令ad=x,bd=y。则有(a+b)n!=abd。此时d已是和a、b无关的量。由a与b互质,得a+b与ab互质,于是将a+b除过来得n!=abd/(a+b)。d/(a+b)可取的值不受a、b限制,那么只要满足ab|n!(a⊥b)就可以了。

  将n!分解质因数,答案就很容易统计了。枚举质数数一下在n!中有几个即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1000010
#define P 1000000007
int n,prime[N],cnt=,ans=;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2721.in","r",stdin);
freopen("bzoj2721.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
flag[]=;
for (int i=;i<=n;i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=;j<=cnt&&prime[j]*i<=n;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
for (int i=;i<=cnt;i++)
{
int w=;
for (int j=n;j;j/=prime[i]) w+=j/prime[i];
ans=1ll*ans*(w<<|)%P;
}
cout<<ans;
return ;
}

BZOJ2721 Violet5樱花(数论)的更多相关文章

  1. bzoj2721 [Violet5]樱花

    bzoj2721 [Violet 5]樱花 给出 \(n\) 求 \(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\) 的正整数解数量 \(\bmod (10^9+7)\) ...

  2. 【BZOJ2721】樱花(数论)

    [BZOJ2721]樱花(数论) 题面 BZOJ 题解 先化简一下式子,得到:\(\displaystyle n!(x+y)=xy\),不难从这个式子中得到\(x,y\gt n!\). 然后通过\(x ...

  3. 【bzoj2721】[Violet 5]樱花 数论

    题目描述 输入 输出 样例输入 2 样例输出 3 题解 数论 设1/x+1/y=1/m,那么xm+ym=xy,所以xy-xm-ym+m^2=m^2,所以(x-m)(y-m)=m^2. 所以解的数量就是 ...

  4. 【BZOJ-2721】樱花 线性筛 + 数学

    2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 499  Solved: 293[Submit][Status][D ...

  5. Luogu1445 [Violet]樱花 ---- 数论优化

    Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...

  6. bzoj 2721[Violet 5]樱花 数论

    [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 671  Solved: 395[Submit][Status][Discuss ...

  7. Bzoj2721 [Violet]樱花(筛法)

    题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...

  8. LOJ10202樱花——数论

    题目描述 原题来自:HackerRank Equations 求不定方程: 1/x+1/y=1/n! 的正整数解 (x,y) 的数目. 输入格式 一个整数 n . 输出格式 一个整数,表示有多少对 ( ...

  9. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...

随机推荐

  1. H.264从SPS中提取视频宽高

    H.264有两种封装模式: (1)annexb模式:传统模式,使用start code来分隔NAL, SPS和PPS是在ES流的头部: (2)mp4模式:没有start code,使用NALU长度(固 ...

  2. phpstorm开发环境搭建流程

    1.下载phpstorm 2.网上找注册码 phpstorm 8 license key Learn Programming===== LICENSE BEGIN =====63758-1204201 ...

  3. 20155218《网络对抗》Exp2 后门原理与实践

    20155218<网络对抗>Exp2 后门原理与实践 常用后门工具实践 1.Windows获得Linux Shell: 在Windows下,先使用ipconfig指令查看本机IP,使用nc ...

  4. WPF 简易进度条效果

    最近做一个项目,看到以前同事写的进度条效果不错,所以,拿来简化了下,不炫,但是项目中还是够用的. 还是,先来看下调用以后的效果 1.因为ProgressbBar的Foreground显示不得不一样,所 ...

  5. 文章翻译:Recommending items to more than a billion people(面向十亿级用户的推荐系统)

    Web上数据的增长使得在完整的数据集上使用许多机器学习算法变得更加困难.特别是对于个性化推荐问题,数据采样通常不是一种选择,需要对分布式算法设计进行创新,以便我们能够扩展到这些不断增长的数据集. 协同 ...

  6. springboot打包成war后部署项目出现异常 LifecycleException: Failed to start component

    完整异常:org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalina].Sta ...

  7. Visual Studio Package 插件开发(Visual Studio SDK)

    背景 这段时间公司新做了一个支付系统,里面有N个后台服务,每次有更新修改,拷贝打包发布包“不亦乐乎”...于是我想要不要自己定制个打包插件. 部分朋友可能会认为,有现成的可以去找一个,干嘛不用持续集成 ...

  8. 第一次软件工程作业(One who wants to wear the crown, Bears the crown.)

    回顾你过去将近3年的学习经历 1.当初报考的时候,是真正的喜欢计算机这个专业吗? 报考时对于计算机专业只能说不讨厌,也可以认为对其没有任何的感觉. 有一个比我自己还注意我未来的老妈,我的报考只能通过一 ...

  9. Linux+Nginx+Asp.net Core及守护进程部署

    上篇<Docker基础入门及示例>文章介绍了Docker部署,以及相关.net core 的打包示例.这篇文章我将以oss.offical.site站点为例,主要介绍下在linux机器下完 ...

  10. [Unity]制作游戏中名字板的过程记录

    先大概说一下需求: 1 每个模型上都要有名字板:人.怪.npc等等. 2 名字板上会显示:名字(文字).血条(图片)等 3 因为是透视相机,名字板离得太近会变得超大,且主角移动,名字板的位置相对于相机 ...