数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
| Time Limit: 6000MS | Memory Limit: 65536K | |
| Total Submissions: 29046 | Accepted: 7342 | |
| Case Time Limit: 4000MS | ||
Description
Input
Output
Sample Input
2
5
10
Sample Output
Prime
2
Source
Mean:
略。
analyse:
输入的n很大,我们不可能再用筛法来求素数,这时Miller_Rabin算法就显得尤为重要。
若n不是素数,需要进行质因数分解,同样的问题,n很大,我们不可能用试除法来进行质因数分解,那样必会tle。这时就必须使用pollard_rho算法来进行质因数分解。
其实Miller_Rabin算法和pollard_rho算法很多时候是组合在一起用的。
Time complexity:O(n) 一般情况下是O(n)
Source code:
//Memory Time
// 1347K 0MS
// by : Snarl_jsb
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 1000010
#define LL long long
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20; //随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=0;
while(b)
{
if(b&1){ret+=a;ret%=c;}
a<<=1;
if(a>=c)a%=c;
b>>=1;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==1)return x%mod;
x%=mod;
long long tmp=x;
long long ret=1;
while(n)
{
if(n&1) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=1;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=1;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==1&&last!=1&&last!=n-1) return true;//合数
last=ret;
}
if(ret!=1) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<2)return false;
if(n==2)return true;
if((n&1)==0) return false;//偶数
long long x=n-1;
long long t=0;
while((x&1)==0){x>>=1;t++;}
for(int i=0;i<S;i++)
{
long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==0)return 1;
if(a<0) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=1,k=2;
long long x0=rand()%x;
long long y=x0;
while(1)
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=1&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
findfac(p);
findfac(n/p);
} int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
long long t;
cin>>t;
while(t--)
{
scanf("%I64d",&n);
if(n==1) continue;
if(Miller_Rabin(n))printf("Prime\n");
else
{
tol=0;
findfac(n);
long long minn=INT_MAX;
for(int i=0;i<tol;i++)
{
if(factor[i]<minn)
{
minn=factor[i];
}
}
printf("%I64d\n",minn);
}
}
return 0;
}
数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test的更多相关文章
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- pollard_rho 算法进行质因数分解
//************************************************ //pollard_rho 算法进行质因数分解 //*********************** ...
- Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test
POJ 1811 Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 32534 Accepted: 8 ...
- poj 1811 Prime Test 大数素数测试+大数因子分解
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 27129 Accepted: 6713 Case ...
- POJ 1811 Prime Test (Rabin-Miller强伪素数测试 和Pollard-rho 因数分解)
题目链接 Description Given a big integer number, you are required to find out whether it's a prime numbe ...
- POJ 1811 Prime Test( Pollard-rho整数分解经典题 )
链接:传送门 题意:输入 n ,判断 n 是否为素数,如果是合数输出 n 的最素因子 思路:Pollard-rho经典题 /************************************** ...
- Miller_Rabbin算法判断大素数,Pollard_rho算法进行质因素分解
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说 ...
- 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...
- Miller_Rabin素数测试【学习笔记】
引语:在数论中,对于素数的研究一直就很多,素数测试的方法也是非常多,如埃式筛法,6N±1法,或者直接暴力判(试除法).但是如果要判断比较大的数是否为素数,那么传统的试除法和筛法都不再适用.所以我们需要 ...
随机推荐
- 10个有关RESTful API良好设计的最佳实践
Web API已经在最近几年变成重要的话题,一个干净的API设计对于后端系统是非常重要的. 通常我们为Web API使用RESTful设计,REST概念分离了API结构和逻辑资源,通过Http方法GE ...
- Delphi 中 动态创建的Panel无法改变颜色的解决办法
刚开始代码如下: procedure TForm1.Button1Click(Sender: TObject); var Panel: TPanel; begin Panel := TPanel.Cr ...
- webdriver实用指南迁移至gitbbok并改名为selenium webdriver从入门到提高
背景 几年前我写了一本关于selenium webdriver的小册子,主要讲了一些selenium在进行测试过程中会遇到的场景以及解决方案,陆陆续续在github上收到了100+的star,在这里我 ...
- 【Cocos2d-Js基础教学(2)类的使用和面向对象】
类的使用和面向对象 大家都知道在cocos2d-x 底层是C++编写的,那么就有类的概念和继承机制. 但是在JS中,是没有类这个概念的,没有提供类,没有C++的类继承机制. 那么JS是通过什么方式实现 ...
- iOS开发 - AVPlayer实现流音频边播边存
边播边下有三套左右实现思路,本文使用AVPlayer + AVURLAsset实现. 概述 1. AVPlayer简介 AVPlayer存在于AVFoundation中,可以播放视频和音频,可以理解为 ...
- JVM内存溢出及合理配置
Tomcat本身不能直接在计算机上运行,需要依赖于硬件基础之上的操作系统和一个Java虚拟机.Tomcat的内存溢出本质就是JVM内存溢出,所以在本文开始时,应该先对Java JVM有关内存方面的知识 ...
- IIS7.5配置SSL
1,首先需要准备两个证书(CA证书,服务器证书). CA证书由公共的CA机构提供,widnow系统内部已经内置了很多这类证书,如图(日文系统). 服务器证书是导入到IIS里面用的. 2,有了上面的认识 ...
- NFC 与 Windows Phone 的那点事儿
说起NFC这个词儿应该已经不陌生了,在我们的生活中有很多使用场景都是使用的这项技术,例如公交卡,门禁,还有银联的闪付卡等等.并且近些年在移动设备上使用的场景也越来越多,例如 对 NFC TAG 的读写 ...
- 那些年做过的 .NET Web 项目和 iOS 之路的一些思考
从2010年3月份出来工作到2015年初,做过的大大小小的 .NET Web 项目如下: (1)售楼系统产品 「Role: Team Member」 (2)中弘合同管理系统 「Role: ...
- iOS 7新功能例子
参考https://github.com/shu223/iOS7-Sampler Code examples for the new functions of iOS 7. Contents Dyna ...