Poisson Distribution

Given a Poisson process, the probability of obtaining exactly successes in trials is given by the limit of a binomial distribution

(1)

Viewing the distribution as a function of the expected number of successes

(2)

instead of the sample size for fixed , equation (2) then becomes

(3)

Letting the sample size become large, the distribution then approaches

(4)
(5)
(6)
(7)
(8)

which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size has completely dropped out of the probability function, which has the same functional form for all values of .

The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].

As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since

(9)

The ratio of probabilities is given by

(10)

The Poisson distribution reaches a maximum when

(11)

where is the Euler-Mascheroni constant and is a harmonic number, leading to the transcendental equation

(12)

which cannot be solved exactly for .

The moment-generating function of the Poisson distribution is given by

(13)
(14)
(15)
(16)
(17)
(18)

so

(19)
(20)

(Papoulis 1984, p. 554).

The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial and Stirling numbers of the second kind,

(21)

known as Dobiński's formula. Therefore,

(22)
(23)
(24)

The central moments can then be computed as

(25)
(26)
(27)

so the mean, variance, skewness, and kurtosis are

(28)
(29)
(30)
(31)
(32)

The characteristic function for the Poisson distribution is

(33)

(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is

(34)

so

(35)

The mean deviation of the Poisson distribution is given by

(36)

The Poisson distribution can also be expressed in terms of

(37)

the rate of changes, so that

(38)

The moment-generating function of a Poisson distribution in two variables is given by

(39)

If the independent variables , , ..., have Poisson distributions with parameters , , ..., , then

(40)

has a Poisson distribution with parameter

(41)

This can be seen since the cumulant-generating function is

(42)
(43)

A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by

(44)

where is the number of galaxies in a volume , , is the average density of galaxies, and , with is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting gives

(45)

which is indeed a Poisson distribution with . Similarly, letting gives .

SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem

 

REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.

Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.

Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.

Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.

 

Referenced on Wolfram|Alpha: Poisson Distribution

 

CITE THIS AS:

Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

1重 0-1分布

N重 二项分布 ,  系数为阶乘降/阶乘增, 从0开始

无限重 v=Np,  泊松分析, 先确定N,再确定对应的p, 再得v,   此时才有泊松分布公式可用

[转]Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  2. Poisson distribution 泊松分布 指数分布

    Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...

  3. 【概率论】5-4:泊松分布(The Poisson Distribution)

    title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...

  4. Poisson Distribution——泊松分布

    老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...

  5. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  6. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  7. Statistics : Data Distribution

    1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...

  8. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

  9. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

随机推荐

  1. Leetcode 969. 煎饼排序

    969. 煎饼排序  显示英文描述 我的提交返回竞赛   用户通过次数134 用户尝试次数158 通过次数135 提交次数256 题目难度Medium 给定数组 A,我们可以对其进行煎饼翻转:我们选择 ...

  2. Leetcode 980. 不同路径 III

    980. 不同路径 III  显示英文描述 我的提交返回竞赛   用户通过次数42 用户尝试次数43 通过次数46 提交次数60 题目难度Hard 在二维网格 grid 上,有 4 种类型的方格: 1 ...

  3. docker实战系列之docker 端口映射错误解决方法

    错误: Error response from daemon: Cannot start container web: iptables failed: iptables -t nat -A DOCK ...

  4. [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆

    [Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...

  5. 生成PDF文档之iText

    iTextSharp.text.Document:这是iText库中最常用的类,它代表了一个pdf实例.如果你需要从零开始生成一个PDF文件,你需要使用这个Document类.首先创建(new)该实例 ...

  6. jQuery获取select值

    jQuery操作select标签 即控制select的option属性 <select id="sid" > <option value="-1&quo ...

  7. 普通01背包问题(dp)

    有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi,vi & ...

  8. 尚学堂java答案解析 第二章

    本答案为本人个人编辑,仅供参考,如果读者发现,请私信本人或在下方评论,提醒本人修改 一.选择题: 1.CD 解析:A public是关键字. B 第一个不能是数字 2.C 解析:j=i++  < ...

  9. 原生js(form)验证,可以借鉴下思路,应用到工作中

    我在工作中时常使用form验证,在目前的公司做的表单验证用的angular的form组件,对于一个有追求的前端,或者应用在移动端写个form验证,引入angular或者jquery组件等验证,难免显得 ...

  10. [javamail]AUTH LOGIN failed;Invalid username or password报错

    项目中需要用到javamailAPI,邮箱服务器用的sohu闪电邮,SMTP协议用来发送,赋值代码: Properties props = new Properties(); props.setPro ...