[转]Poisson Distribution
Poisson Distribution

Given a Poisson process, the probability of obtaining exactly
successes in
trials is given by the limit of a binomial distribution
![]() |
(1)
|
Viewing the distribution as a function of the expected number of successes
![]() |
(2)
|
instead of the sample size
for fixed
, equation (2) then becomes
![]() |
(3)
|
Letting the sample size
become large, the distribution then approaches
![]() |
![]() |
![]() |
(4)
|
![]() |
![]() |
![]() |
(5)
|
![]() |
![]() |
![]() |
(6)
|
![]() |
![]() |
![]() |
(7)
|
![]() |
![]() |
![]() |
(8)
|
which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size
has completely dropped out of the probability function, which has the same functional form for all values of
.
The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].
As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since
![]() |
(9)
|
The ratio of probabilities is given by
![]() |
(10)
|
The Poisson distribution reaches a maximum when
![]() |
(11)
|
where
is the Euler-Mascheroni constant and
is a harmonic number, leading to the transcendental equation
![]() |
(12)
|
which cannot be solved exactly for
.
The moment-generating function of the Poisson distribution is given by
![]() |
![]() |
![]() |
(13)
|
![]() |
![]() |
![]() |
(14)
|
![]() |
![]() |
![]() |
(15)
|
![]() |
![]() |
![]() |
(16)
|
![]() |
![]() |
![]() |
(17)
|
![]() |
![]() |
![]() |
(18)
|
so
![]() |
![]() |
![]() |
(19)
|
![]() |
![]() |
![]() |
(20)
|
(Papoulis 1984, p. 554).
The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial
and Stirling numbers of the second kind,
![]() |
(21)
|
known as Dobiński's formula. Therefore,
![]() |
![]() |
![]() |
(22)
|
![]() |
![]() |
![]() |
(23)
|
![]() |
![]() |
![]() |
(24)
|
The central moments can then be computed as
![]() |
![]() |
![]() |
(25)
|
![]() |
![]() |
![]() |
(26)
|
![]() |
![]() |
![]() |
(27)
|
so the mean, variance, skewness, and kurtosis are
![]() |
![]() |
![]() |
(28)
|
![]() |
![]() |
![]() |
(29)
|
![]() |
![]() |
![]() |
(30)
|
![]() |
![]() |
![]() |
(31)
|
![]() |
![]() |
![]() |
(32)
|
The characteristic function for the Poisson distribution is
![]() |
(33)
|
(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is
![]() |
(34)
|
so
![]() |
(35)
|
The mean deviation of the Poisson distribution is given by
![]() |
(36)
|
The Poisson distribution can also be expressed in terms of
![]() |
(37)
|
the rate of changes, so that
![]() |
(38)
|
The moment-generating function of a Poisson distribution in two variables is given by
![]() |
(39)
|
If the independent variables
,
, ...,
have Poisson distributions with parameters
,
, ...,
, then
![]() |
(40)
|
has a Poisson distribution with parameter
![]() |
(41)
|
This can be seen since the cumulant-generating function is
![]() |
(42)
|
![]() |
(43)
|
A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by
![]() |
(44)
|
where
is the number of galaxies in a volume
,
,
is the average density of galaxies, and
, with
is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting
gives
![]() |
(45)
|
which is indeed a Poisson distribution with
. Similarly, letting
gives
.
SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.
Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.
Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.
Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.
Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.
Referenced on Wolfram|Alpha: Poisson Distribution
CITE THIS AS:
Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
1重 0-1分布
N重 二项分布 , 系数为阶乘降/阶乘增, 从0开始
无限重 v=Np, 泊松分析, 先确定N,再确定对应的p, 再得v, 此时才有泊松分布公式可用
[转]Poisson Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- Poisson distribution 泊松分布 指数分布
Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...
- 【概率论】5-4:泊松分布(The Poisson Distribution)
title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...
- Poisson Distribution——泊松分布
老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- The zero inflated negative binomial distribution
The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...
- Statistics : Data Distribution
1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...
- 常见的概率分布类型(二)(Probability Distribution II)
以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
随机推荐
- Leetcode 980. 不同路径 III
980. 不同路径 III 显示英文描述 我的提交返回竞赛 用户通过次数42 用户尝试次数43 通过次数46 提交次数60 题目难度Hard 在二维网格 grid 上,有 4 种类型的方格: 1 ...
- Beta阶段——第5篇 Scrum 冲刺博客
Beta阶段--第5篇 Scrum 冲刺博客 标签:软件工程 一.站立式会议照片 二.每个人的工作 (有work item 的ID) 昨日已完成的工作 人员 工作 林羽晴 完成了邮箱发送功能的测试,测 ...
- NIO高性能框架-Netty
一:Netty是什么 ? Netty是目前最流行的由JBOSS提供的一个Java开源框架NIO框架,Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客 ...
- Jsop的原理
Jsop的原理:利用script不存在跨域的问题,动态创建script标签,把需要请求的数据源地址赋值给其src属性,并且指定一个回调函数,从而接受到我们想要的数据
- ActiveMQ consumer按顺序处理消息
http://activemq.apache.org/exclusive-consumer.html producer发送消息是有先后顺序的,这种顺序保持到了broker中.如果希望消息按顺序被消费掉 ...
- PyCharm+Miniconda3安装配置教程
PyCharm是Python著名的Python集成开发环境(IDE) conda有Miniconda和Anaconda,前者应该是类似最小化版本,后者可能是功能更为强大的版本,我们这里安装Minico ...
- Linux用户创建/磁盘挂载相关命令
命令 作用 常用参数说明 groupadd 增加用户组 -g指定组id groupmod 修饰用户组 参数和groupadd类似 groupdel 删除用户组 直接组名没参数 useradd 增加用户 ...
- 使用Spring Security安全控制(二十六)
准备工作 首先,构建一个简单的Web工程,以用于后续添加安全控制,也可以用之前Chapter3-1-2做为基础工程.若对如何使用Spring Boot构建Web应用,可以先阅读<Spring B ...
- ASP.Net MVC(2) 之目录结构
认识MVC从目录结构 App_Data 文件夹 用于存储应用程序数据. App_Start 启动文件的配置信息,包括很重要的RouteConfig路由注册信息 Content文件 Content 文件 ...
- UVa 10891 - Game of Sum 动态规划,博弈 难度: 0
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...




























































































