Poisson Distribution

Given a Poisson process, the probability of obtaining exactly successes in trials is given by the limit of a binomial distribution

(1)

Viewing the distribution as a function of the expected number of successes

(2)

instead of the sample size for fixed , equation (2) then becomes

(3)

Letting the sample size become large, the distribution then approaches

(4)
(5)
(6)
(7)
(8)

which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size has completely dropped out of the probability function, which has the same functional form for all values of .

The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].

As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since

(9)

The ratio of probabilities is given by

(10)

The Poisson distribution reaches a maximum when

(11)

where is the Euler-Mascheroni constant and is a harmonic number, leading to the transcendental equation

(12)

which cannot be solved exactly for .

The moment-generating function of the Poisson distribution is given by

(13)
(14)
(15)
(16)
(17)
(18)

so

(19)
(20)

(Papoulis 1984, p. 554).

The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial and Stirling numbers of the second kind,

(21)

known as Dobiński's formula. Therefore,

(22)
(23)
(24)

The central moments can then be computed as

(25)
(26)
(27)

so the mean, variance, skewness, and kurtosis are

(28)
(29)
(30)
(31)
(32)

The characteristic function for the Poisson distribution is

(33)

(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is

(34)

so

(35)

The mean deviation of the Poisson distribution is given by

(36)

The Poisson distribution can also be expressed in terms of

(37)

the rate of changes, so that

(38)

The moment-generating function of a Poisson distribution in two variables is given by

(39)

If the independent variables , , ..., have Poisson distributions with parameters , , ..., , then

(40)

has a Poisson distribution with parameter

(41)

This can be seen since the cumulant-generating function is

(42)
(43)

A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by

(44)

where is the number of galaxies in a volume , , is the average density of galaxies, and , with is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting gives

(45)

which is indeed a Poisson distribution with . Similarly, letting gives .

SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem

 

REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.

Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.

Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.

Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.

 

Referenced on Wolfram|Alpha: Poisson Distribution

 

CITE THIS AS:

Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

1重 0-1分布

N重 二项分布 ,  系数为阶乘降/阶乘增, 从0开始

无限重 v=Np,  泊松分析, 先确定N,再确定对应的p, 再得v,   此时才有泊松分布公式可用

[转]Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  2. Poisson distribution 泊松分布 指数分布

    Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...

  3. 【概率论】5-4:泊松分布(The Poisson Distribution)

    title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...

  4. Poisson Distribution——泊松分布

    老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...

  5. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  6. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  7. Statistics : Data Distribution

    1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...

  8. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

  9. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

随机推荐

  1. oracle having字句

    现在要求查询出职位的平均每个职位的名称,工资,但是要求显示的职位的平均工资高于2000.        即:按照职位先进行分组,同时统计出每个职位的平均工资        随后要求直显示哪些平均工资高 ...

  2. ActiveMQ Advisory Message

    http://activemq.apache.org/advisory-message.html ActiveMQ broker 内部维持了一些 topic,保存了一些系统信息,客户端可以订阅这些 t ...

  3. 这些你都了解么------程序员"跳槽"法则

    篇头语: “跳槽”这个词是从我报了"软件工程"这个专业后就已经开始听说的词了, 在大学中老师上课也会常说:“等你们参加工作以后,工资低不怕,没事就跳槽,之后工资就高了”: 我相信听 ...

  4. 逆袭之旅DAY24.XIA.数组练习

    2018-07-20 08:40:19 1. public void stringSort(){ String[] s = new String[]{"George"," ...

  5. Win10系列:VC++绘制几何图形4

    三角形绘制完成以后,接下来介绍如何给项目添加主入口函数.打开D2DBasicAnimation.h头文件,添加如下的代码定义一个DirectXAppSource类. //定义类DirectXAppSo ...

  6. Win10系列:VC++文件选取

    在C++/CX的Windows::Storage::Pickers命名空间中定义了一个FileOpenPicker类,使用此类可以新建一个文件打开选取器,并可以通过这个类里面包含的属性和函数选取一个或 ...

  7. 普通程序员,三年成为年薪70w架构师,只因做到了这些

    每个程序员.或者说每个工作者都应该有自己的职业规划,如果你不是富二代,不是官二代,也没有职业规划,希望你可以思考一下自己的将来.今天给大家分享的是一篇来自阿里Java架构师对普通程序员的职业建议,希望 ...

  8. swiftlint 你所要知道的所有!!

    swiftin Should the opening brace of a function or control flow statement be on a new line or not ?:) ...

  9. matlab中文本文件与图像转化

    一  将图片转化为txt文本文件 a=imread('picture.bmp');   //读取picture.bmp图片 b=rgb2gray(a);                 //由rgb图 ...

  10. Oracle中把一张表查询结果插入到另一张表中

      1. 新增一个表,通过另一个表的结构和数据 create table XTHAME.tab1 as select * from DSKNOW.COMBDVERSION 2. 如果表存在: inse ...