Poisson Distribution

Given a Poisson process, the probability of obtaining exactly successes in trials is given by the limit of a binomial distribution

(1)

Viewing the distribution as a function of the expected number of successes

(2)

instead of the sample size for fixed , equation (2) then becomes

(3)

Letting the sample size become large, the distribution then approaches

(4)
(5)
(6)
(7)
(8)

which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size has completely dropped out of the probability function, which has the same functional form for all values of .

The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].

As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since

(9)

The ratio of probabilities is given by

(10)

The Poisson distribution reaches a maximum when

(11)

where is the Euler-Mascheroni constant and is a harmonic number, leading to the transcendental equation

(12)

which cannot be solved exactly for .

The moment-generating function of the Poisson distribution is given by

(13)
(14)
(15)
(16)
(17)
(18)

so

(19)
(20)

(Papoulis 1984, p. 554).

The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial and Stirling numbers of the second kind,

(21)

known as Dobiński's formula. Therefore,

(22)
(23)
(24)

The central moments can then be computed as

(25)
(26)
(27)

so the mean, variance, skewness, and kurtosis are

(28)
(29)
(30)
(31)
(32)

The characteristic function for the Poisson distribution is

(33)

(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is

(34)

so

(35)

The mean deviation of the Poisson distribution is given by

(36)

The Poisson distribution can also be expressed in terms of

(37)

the rate of changes, so that

(38)

The moment-generating function of a Poisson distribution in two variables is given by

(39)

If the independent variables , , ..., have Poisson distributions with parameters , , ..., , then

(40)

has a Poisson distribution with parameter

(41)

This can be seen since the cumulant-generating function is

(42)
(43)

A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by

(44)

where is the number of galaxies in a volume , , is the average density of galaxies, and , with is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting gives

(45)

which is indeed a Poisson distribution with . Similarly, letting gives .

SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem

 

REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.

Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.

Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.

Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.

 

Referenced on Wolfram|Alpha: Poisson Distribution

 

CITE THIS AS:

Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

1重 0-1分布

N重 二项分布 ,  系数为阶乘降/阶乘增, 从0开始

无限重 v=Np,  泊松分析, 先确定N,再确定对应的p, 再得v,   此时才有泊松分布公式可用

[转]Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  2. Poisson distribution 泊松分布 指数分布

    Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...

  3. 【概率论】5-4:泊松分布(The Poisson Distribution)

    title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...

  4. Poisson Distribution——泊松分布

    老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...

  5. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  6. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  7. Statistics : Data Distribution

    1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...

  8. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

  9. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

随机推荐

  1. Leetcode 980. 不同路径 III

    980. 不同路径 III  显示英文描述 我的提交返回竞赛   用户通过次数42 用户尝试次数43 通过次数46 提交次数60 题目难度Hard 在二维网格 grid 上,有 4 种类型的方格: 1 ...

  2. Beta阶段——第5篇 Scrum 冲刺博客

    Beta阶段--第5篇 Scrum 冲刺博客 标签:软件工程 一.站立式会议照片 二.每个人的工作 (有work item 的ID) 昨日已完成的工作 人员 工作 林羽晴 完成了邮箱发送功能的测试,测 ...

  3. NIO高性能框架-Netty

    一:Netty是什么 ? Netty是目前最流行的由JBOSS提供的一个Java开源框架NIO框架,Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客 ...

  4. Jsop的原理

    Jsop的原理:利用script不存在跨域的问题,动态创建script标签,把需要请求的数据源地址赋值给其src属性,并且指定一个回调函数,从而接受到我们想要的数据

  5. ActiveMQ consumer按顺序处理消息

    http://activemq.apache.org/exclusive-consumer.html producer发送消息是有先后顺序的,这种顺序保持到了broker中.如果希望消息按顺序被消费掉 ...

  6. PyCharm+Miniconda3安装配置教程

    PyCharm是Python著名的Python集成开发环境(IDE) conda有Miniconda和Anaconda,前者应该是类似最小化版本,后者可能是功能更为强大的版本,我们这里安装Minico ...

  7. Linux用户创建/磁盘挂载相关命令

    命令 作用 常用参数说明 groupadd 增加用户组 -g指定组id groupmod 修饰用户组 参数和groupadd类似 groupdel 删除用户组 直接组名没参数 useradd 增加用户 ...

  8. 使用Spring Security安全控制(二十六)

    准备工作 首先,构建一个简单的Web工程,以用于后续添加安全控制,也可以用之前Chapter3-1-2做为基础工程.若对如何使用Spring Boot构建Web应用,可以先阅读<Spring B ...

  9. ASP.Net MVC(2) 之目录结构

    认识MVC从目录结构 App_Data 文件夹 用于存储应用程序数据. App_Start 启动文件的配置信息,包括很重要的RouteConfig路由注册信息 Content文件 Content 文件 ...

  10. UVa 10891 - Game of Sum 动态规划,博弈 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...