[转]Poisson Distribution
Poisson Distribution

Given a Poisson process, the probability of obtaining exactly
successes in
trials is given by the limit of a binomial distribution
![]() |
(1)
|
Viewing the distribution as a function of the expected number of successes
![]() |
(2)
|
instead of the sample size
for fixed
, equation (2) then becomes
![]() |
(3)
|
Letting the sample size
become large, the distribution then approaches
![]() |
![]() |
![]() |
(4)
|
![]() |
![]() |
![]() |
(5)
|
![]() |
![]() |
![]() |
(6)
|
![]() |
![]() |
![]() |
(7)
|
![]() |
![]() |
![]() |
(8)
|
which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size
has completely dropped out of the probability function, which has the same functional form for all values of
.
The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].
As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since
![]() |
(9)
|
The ratio of probabilities is given by
![]() |
(10)
|
The Poisson distribution reaches a maximum when
![]() |
(11)
|
where
is the Euler-Mascheroni constant and
is a harmonic number, leading to the transcendental equation
![]() |
(12)
|
which cannot be solved exactly for
.
The moment-generating function of the Poisson distribution is given by
![]() |
![]() |
![]() |
(13)
|
![]() |
![]() |
![]() |
(14)
|
![]() |
![]() |
![]() |
(15)
|
![]() |
![]() |
![]() |
(16)
|
![]() |
![]() |
![]() |
(17)
|
![]() |
![]() |
![]() |
(18)
|
so
![]() |
![]() |
![]() |
(19)
|
![]() |
![]() |
![]() |
(20)
|
(Papoulis 1984, p. 554).
The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial
and Stirling numbers of the second kind,
![]() |
(21)
|
known as Dobiński's formula. Therefore,
![]() |
![]() |
![]() |
(22)
|
![]() |
![]() |
![]() |
(23)
|
![]() |
![]() |
![]() |
(24)
|
The central moments can then be computed as
![]() |
![]() |
![]() |
(25)
|
![]() |
![]() |
![]() |
(26)
|
![]() |
![]() |
![]() |
(27)
|
so the mean, variance, skewness, and kurtosis are
![]() |
![]() |
![]() |
(28)
|
![]() |
![]() |
![]() |
(29)
|
![]() |
![]() |
![]() |
(30)
|
![]() |
![]() |
![]() |
(31)
|
![]() |
![]() |
![]() |
(32)
|
The characteristic function for the Poisson distribution is
![]() |
(33)
|
(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is
![]() |
(34)
|
so
![]() |
(35)
|
The mean deviation of the Poisson distribution is given by
![]() |
(36)
|
The Poisson distribution can also be expressed in terms of
![]() |
(37)
|
the rate of changes, so that
![]() |
(38)
|
The moment-generating function of a Poisson distribution in two variables is given by
![]() |
(39)
|
If the independent variables
,
, ...,
have Poisson distributions with parameters
,
, ...,
, then
![]() |
(40)
|
has a Poisson distribution with parameter
![]() |
(41)
|
This can be seen since the cumulant-generating function is
![]() |
(42)
|
![]() |
(43)
|
A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by
![]() |
(44)
|
where
is the number of galaxies in a volume
,
,
is the average density of galaxies, and
, with
is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting
gives
![]() |
(45)
|
which is indeed a Poisson distribution with
. Similarly, letting
gives
.
SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.
Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.
Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.
Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.
Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.
Referenced on Wolfram|Alpha: Poisson Distribution
CITE THIS AS:
Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
1重 0-1分布
N重 二项分布 , 系数为阶乘降/阶乘增, 从0开始
无限重 v=Np, 泊松分析, 先确定N,再确定对应的p, 再得v, 此时才有泊松分布公式可用
[转]Poisson Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- Poisson distribution 泊松分布 指数分布
Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...
- 【概率论】5-4:泊松分布(The Poisson Distribution)
title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...
- Poisson Distribution——泊松分布
老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- The zero inflated negative binomial distribution
The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...
- Statistics : Data Distribution
1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...
- 常见的概率分布类型(二)(Probability Distribution II)
以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
随机推荐
- Leetcode 969. 煎饼排序
969. 煎饼排序 显示英文描述 我的提交返回竞赛 用户通过次数134 用户尝试次数158 通过次数135 提交次数256 题目难度Medium 给定数组 A,我们可以对其进行煎饼翻转:我们选择 ...
- Leetcode 980. 不同路径 III
980. 不同路径 III 显示英文描述 我的提交返回竞赛 用户通过次数42 用户尝试次数43 通过次数46 提交次数60 题目难度Hard 在二维网格 grid 上,有 4 种类型的方格: 1 ...
- docker实战系列之docker 端口映射错误解决方法
错误: Error response from daemon: Cannot start container web: iptables failed: iptables -t nat -A DOCK ...
- [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆
[Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...
- 生成PDF文档之iText
iTextSharp.text.Document:这是iText库中最常用的类,它代表了一个pdf实例.如果你需要从零开始生成一个PDF文件,你需要使用这个Document类.首先创建(new)该实例 ...
- jQuery获取select值
jQuery操作select标签 即控制select的option属性 <select id="sid" > <option value="-1&quo ...
- 普通01背包问题(dp)
有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi,vi & ...
- 尚学堂java答案解析 第二章
本答案为本人个人编辑,仅供参考,如果读者发现,请私信本人或在下方评论,提醒本人修改 一.选择题: 1.CD 解析:A public是关键字. B 第一个不能是数字 2.C 解析:j=i++ < ...
- 原生js(form)验证,可以借鉴下思路,应用到工作中
我在工作中时常使用form验证,在目前的公司做的表单验证用的angular的form组件,对于一个有追求的前端,或者应用在移动端写个form验证,引入angular或者jquery组件等验证,难免显得 ...
- [javamail]AUTH LOGIN failed;Invalid username or password报错
项目中需要用到javamailAPI,邮箱服务器用的sohu闪电邮,SMTP协议用来发送,赋值代码: Properties props = new Properties(); props.setPro ...




























































































