[转]Poisson Distribution
Poisson Distribution

Given a Poisson process, the probability of obtaining exactly
successes in
trials is given by the limit of a binomial distribution
![]() |
(1)
|
Viewing the distribution as a function of the expected number of successes
![]() |
(2)
|
instead of the sample size
for fixed
, equation (2) then becomes
![]() |
(3)
|
Letting the sample size
become large, the distribution then approaches
![]() |
![]() |
![]() |
(4)
|
![]() |
![]() |
![]() |
(5)
|
![]() |
![]() |
![]() |
(6)
|
![]() |
![]() |
![]() |
(7)
|
![]() |
![]() |
![]() |
(8)
|
which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size
has completely dropped out of the probability function, which has the same functional form for all values of
.
The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].
As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since
![]() |
(9)
|
The ratio of probabilities is given by
![]() |
(10)
|
The Poisson distribution reaches a maximum when
![]() |
(11)
|
where
is the Euler-Mascheroni constant and
is a harmonic number, leading to the transcendental equation
![]() |
(12)
|
which cannot be solved exactly for
.
The moment-generating function of the Poisson distribution is given by
![]() |
![]() |
![]() |
(13)
|
![]() |
![]() |
![]() |
(14)
|
![]() |
![]() |
![]() |
(15)
|
![]() |
![]() |
![]() |
(16)
|
![]() |
![]() |
![]() |
(17)
|
![]() |
![]() |
![]() |
(18)
|
so
![]() |
![]() |
![]() |
(19)
|
![]() |
![]() |
![]() |
(20)
|
(Papoulis 1984, p. 554).
The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial
and Stirling numbers of the second kind,
![]() |
(21)
|
known as Dobiński's formula. Therefore,
![]() |
![]() |
![]() |
(22)
|
![]() |
![]() |
![]() |
(23)
|
![]() |
![]() |
![]() |
(24)
|
The central moments can then be computed as
![]() |
![]() |
![]() |
(25)
|
![]() |
![]() |
![]() |
(26)
|
![]() |
![]() |
![]() |
(27)
|
so the mean, variance, skewness, and kurtosis are
![]() |
![]() |
![]() |
(28)
|
![]() |
![]() |
![]() |
(29)
|
![]() |
![]() |
![]() |
(30)
|
![]() |
![]() |
![]() |
(31)
|
![]() |
![]() |
![]() |
(32)
|
The characteristic function for the Poisson distribution is
![]() |
(33)
|
(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is
![]() |
(34)
|
so
![]() |
(35)
|
The mean deviation of the Poisson distribution is given by
![]() |
(36)
|
The Poisson distribution can also be expressed in terms of
![]() |
(37)
|
the rate of changes, so that
![]() |
(38)
|
The moment-generating function of a Poisson distribution in two variables is given by
![]() |
(39)
|
If the independent variables
,
, ...,
have Poisson distributions with parameters
,
, ...,
, then
![]() |
(40)
|
has a Poisson distribution with parameter
![]() |
(41)
|
This can be seen since the cumulant-generating function is
![]() |
(42)
|
![]() |
(43)
|
A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by
![]() |
(44)
|
where
is the number of galaxies in a volume
,
,
is the average density of galaxies, and
, with
is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting
gives
![]() |
(45)
|
which is indeed a Poisson distribution with
. Similarly, letting
gives
.
SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.
Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.
Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.
Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.
Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.
Referenced on Wolfram|Alpha: Poisson Distribution
CITE THIS AS:
Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
1重 0-1分布
N重 二项分布 , 系数为阶乘降/阶乘增, 从0开始
无限重 v=Np, 泊松分析, 先确定N,再确定对应的p, 再得v, 此时才有泊松分布公式可用
[转]Poisson Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- Poisson distribution 泊松分布 指数分布
Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...
- 【概率论】5-4:泊松分布(The Poisson Distribution)
title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...
- Poisson Distribution——泊松分布
老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- The zero inflated negative binomial distribution
The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...
- Statistics : Data Distribution
1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...
- 常见的概率分布类型(二)(Probability Distribution II)
以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
随机推荐
- python 常用代码
获取标签名 h1 class 是h1usersoup.find(name="h1", attrs={"class":"h1user"});获 ...
- sqlite3 删除数据
cx = sqlite3.connect("c:/数据库地址") # 打开数据库cu = cx.cursor()# delete the rowcu.execute("d ...
- python中RabbitMQ的使用(交换机,广播形式)
简介 如果要让每个接收端都能收到消息,此时需要将消息广播出去,需要使用交换机. 工作原理 消息发送端先将消息发送给交换机,交换机再将消息发送到绑定的消息队列,而后每个接收端都能从各自的消息队列里接收到 ...
- [contest 781] 9.6
[contest 781] 9.6 - XJOI czx的温暖题... T1 军训
- [CodeForces - 197D] D - Infinite Maze
D - Infinite Maze We've got a rectangular n × m-cell maze. Each cell is either passable, or is a wal ...
- py request.post header
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome ...
- python-flask基础
get请求: 使用场景:如果只对服务器获取数据,并没有对服务器产生任何影响,那么这时候使用get请求. 传参:get请求传参是放在url中,并且是通过’?’的形式来指定key和value的. post ...
- .clearfix:after(清除浮动)中各个属性及值详细解说
清除浮动.clearfix:after一词,从事web前端的朋友们对此不会陌生吧,下面为大家介绍的是.clearfix:after中用到的所有属性及值的含义,对此感兴趣的朋友可以参考下哈想,希望对大家 ...
- vue-router-3-嵌套路由
<div id="app"> <router-view></router-view> </div> const User = { t ...
- Linux命令----uname查看系统信息
uname就是UNIXname的缩写 1.uname可以查询操作系统信息 [root@yuan ~]# uname Linux 2.uname -n显示系统的主机名 [root@yuan ~]# un ...




























































































