prufer序列

度娘的定义

Prufer数列是无根树的一种数列。在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2。

对于一棵确定的无根树,对应着唯一确定的prufer序列

构造方法

无根树转化为prufer序列

  1. 找到编号最小的度数为\(1\)的点
  2. 删除该节点并在序列中添加与该节点相连的节点的编号
  3. 重复\(1,2\)操作,直到整棵树只剩下两个节点

如下图的prufer序列为\(3,5,1,3\)

prufer序列转化为无根树

  1. 每次取出prufer序列中最前面的元素\(u\)
  2. 在点集中找到编号最小的没有在prufer序列中出现的元素\(v\)
  3. 给\(u,v\)连边然后分别删除
  4. 最后在点集中剩下两个节点,给它们连边

例如,对于prufer序列\(3,5,1,3\)
连边顺序为
\(2,3\),
\(5,4\),
\(1,5\),
\(3,1\),
\(3,6\)
(实际上与构建prufer序列时相同)
以上两种操作都可以用set维护,时间复杂度\(O(nlogn)\)

性质

  1. prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1

  2. 一棵n个节点的无根树唯一地对应了一个长度为n-2的数列,数列中的每个数都在1到n的范围内。

  3. \(n\)个点的无向完全图的生成树的计数:\(n^{(n-2)}\),即\(n\)个点的有标号无根树的计数

  4. n个节点的度依次为\(d_1,d_2,…,d_n\)的无根树共有\(\frac{(n-2)!}{ \prod_{i=1}^n(d_i-1)!}\)个,因为此时Prufer编码中的数字\(i\)恰好出现\(d_i-1\)次,\((n−2)!\)是总排列数
  5. n个点的 有标号有根树的计数:\(n^{(n-2)}*n = n^{(n-1)}\)

暂且写这些吧,先做做题,然后继续整理

prufer序列笔记的更多相关文章

  1. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  2. prufer序列学习笔记

    prufer序列是一个定义在无根树上的东西. 构造方法是:每次选一个编号最小的叶子结点,把他的父亲的编号加入到序列的最后.然后删掉这个叶节点.直到最后只剩下两个节点,此时得到的序列就是prufer序列 ...

  3. [学习笔记]prufer序列

    前言 PKUWC和NOIWC都考察了prufer序列,结果统统爆零 prufer序列就是有标号生成树对序列的映射 prufer序列生成 每次选择编号最小的叶子删掉,把叶子的父亲加入prufer序列,直 ...

  4. prufer 序列 学习笔记

    prufer 序列是一种无根树的序列,对于一个 \(n\) 个点的树,其 prufer 序列的长度为 \(n-2\). prufer 序列和原树之间都可以唯一地相互转化. 构造 构造 prufer 序 ...

  5. [笔记] prufer 序列

    什么是 prufer 序列 是可以和 \(n\) 个有标号节点的无根树一一对应的长度为 \(n-2\) 的序列. 一般来说是用于和树相关的组合计数问题,但是可能会出现一些变形,所以除了要了解一些性质, ...

  6. 【专题】计数问题(排列组合,容斥原理,Prufer序列)

    [容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...

  7. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

  8. bzoj1430 小猴打架 prufer 序列

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1430 题解 prufer 序列模板题. 一个由 \(n\) 个点构成的有标号无根树的个数为 \ ...

  9. bzoj 1005 1211 prufer序列总结

    两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...

随机推荐

  1. Data Center手册(2): 安全性

    有个安全性有下面几种概念: Threat:威胁 Vulnerability: 安全隐患 Attack: 攻击 有关Threat 常见的威胁有下面几种 DoS(Denial of Service拒绝服务 ...

  2. Daily Pathtracer!安利下不错的Pathtracer学习资料

    0x00 前言 最近看到了我司大网红aras-p(Aras Pranckevičius)的博客开了一个很有趣的新系列<Daily Pathtracer~>,来实现一个简单的ToyPathT ...

  3. 安卓开发学习笔记(四):Android Stuidio无法实现隐式Intent是为什么?

    一.首先检查我们的代码: FirstActivity.java(主活动程序当中的代码):Button3监听器后面的代码就是我们隐式Intent的业务逻辑所在了,大家可以往下面看看,大概在代码的第57行 ...

  4. Druid的简介

    Druid的简介 Druid首先是一个数据库连接池.Druid是目前最好的数据库连接池,在功能.性能.扩展性方面,都超过其他数据库连接池,包括DBCP.C3P0.BoneCP.Proxool.JBos ...

  5. 【安富莱专题教程第7期】终极调试组件Event Recorder,各种Link通吃,支持时间和功耗测量,printf打印,RTX5及中间件调试

    说明:1.继前面的专题教程推出SEGGER的RTT,JScope,Micrium的uC/Probe之后,再出一期终极调试方案Event Recoder,之所以叫终极解决方案,是因为所有Link通吃.  ...

  6. Redis API的原子性分析

    在学习Redis的常用操作时,经常看到介绍说,Redis的set.get以及hset等等命令的执行都是原子性的,但是令自己百思不得其解的是,为什么这些操作是原子性的? 原子性 原子性是数据库的事务中的 ...

  7. 【DFS】求水洼的数目

    题目: 有一个大小为 N*M 的园子,雨后积起了水.八连通的积水被认为是连接在一起的.请求出园子里总共有多少水洼?(八连通指的是下图中相对 W 的*的部分) *** *W* *** 限制条件:N, M ...

  8. FFmpeg开发实战(五):FFmpeg 抽取音视频的视频数据

    如何使用FFmpeg抽取音视频的视频数据,代码如下: // FFmpegTest.cpp : 此文件包含 "main" 函数.程序执行将在此处开始并结束. // #include ...

  9. [Swift]LeetCode840. 矩阵中的幻方 | Magic Squares In Grid

    A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, co ...

  10. Spring之AOP流程解析(ProxyFactory)

    本节我们从ProxyFactory开始分析.该类有几个比较重要的方法——addAdvice.addAdvisor.getProxy,其中最后一个方法是我们本节的重点.前两个方法都是向ProxyFact ...