[bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]
题面
正文
其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的)
如果没有这个特殊条件,我们很容易想到dp做法:设$dp\left[i\right]\left[j\right]$表示第i个时刻(初始算0),走到第j个点的答案总数
但是这里要限制不能反复走,那么直接设点会导致信息丢失
那我们怎么样才能让保存当前所在点的情况下,不丢失最后一条边的信息呢?
答案非常显然,我们只要设$dp\left[i\right]\left[j\right]$表示第i个时刻(初始算0),走到第j条边的终点(也就是刚刚经过了第j条边到达这里)的答案总数,就可以了
此时我们因为知道第j条边的所有信息,而第j条边的信息中又包括了当前所在节点,所以我们继续转移需要的信息都收集全了
转移就是从当前点$u$开始,枚举从$u$出发的边$k$,向$dp\left[i+1\right]\left[to\left(k\right)\right]$转移即可
然而这里有个问题:T太大了,直接转移肯定爆炸,那怎么办呢?
我们观察可得,对于每个$dp\left[i\right]\left[j\right]$,只要$j$确定了,那么他应该往哪些状态转移也就确定了,同时这个转移一定是线性的(也就是$dp$这一项一定是一次的)
那我们还等什么呢?矩阵快速幂上啊!
我们构造转移矩阵B和初始状态矩阵A,但是这里又有一个问题:初始只有一个出发节点,并没有不能走哪条边的限制,但是转移矩阵B又依赖于这个限制,怎么办呢?
这好说,我们只要把A矩阵从所有$dp\left[0\right]\left[j\right]$变成所有$dp\left[1\right]\left[j\right]$就好了
这时答案矩阵$C=A\ast B^{t-1}$
只要取出答案矩阵中所有终点是给定终点的边的答案之和,输出即可
Code
写了结构体重载运算符......慢死
还好加了读入优化苟过去了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
inline ll read(){
ll re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
ll MOD=45989;
ll n,m,op,ed,tt,cnt=0,first[110];
struct edge{//邻接表存边
ll next,to;
}a[150];
inline void add(ll u,ll v){//矩阵结构体
a[++cnt]=(edge){first[u],v};first[u]=cnt;
a[++cnt]=(edge){first[v],u};first[v]=cnt;
}
struct ma{
ll a[150][150],n,m;
ma(){memset(a,0,sizeof(a));n=m=0;}
void clear(){memset(a,0,sizeof(a));n=m=0;}
const ma operator *(const ma &b){
ma re;re.n=n;re.m=b.m;ll i,j,k;
for(i=1;i<=n;i++){
for(k=1;k<=m;k++){
if(!a[i][k]) continue;
for(j=1;j<=b.m;j++){
re.a[i][j]+=(a[i][k]*b.a[k][j]);
re.a[i][j]%=MOD;
}
}
}
return re;
}
const void operator =(const ma &b){
n=b.n;m=b.m;ll i,j;
for(i=1;i<=n;i++) for(j=1;j<=m;j++) a[i][j]=b.a[i][j];
}
}A,B;
void qpow(ma &x,ma y,ll T){
while(T){
if(T&1) x=x*y;
y=y*y;T>>=1;
}
}
ll o(ll x){return ((x%2)?(x+1):(x-1));}//求一条边的反向边(因为我是一开始编号的,所以不方便直接异或)
int main(){
memset(first,-1,sizeof(first));ll i,t1,t2,j,u;
n=read();m=read();tt=read();op=read();ed=read();op++;ed++;
for(i=1;i<=m;i++){
t1=read();t2=read();t1++;t2++;
add(t1,t2);
}
A.n=1;A.m=B.m=B.n=cnt;
for(j=1;j<=cnt;j++){//构造转移矩阵
u=a[j].to;
for(i=first[u];~i;i=a[i].next){
if(i==o(j)) continue;
B.a[j][i]+=1;
}
}
for(i=first[op];~i;i=a[i].next){//构造初始矩阵
A.a[1][i]+=1;
}
qpow(A,B,tt-1);ll ans=0;
for(i=first[ed];~i;i=a[i].next){//统计答案
ans=(ans+A.a[1][o(i)])%MOD;
}
printf("%lld",ans);
}
[bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]的更多相关文章
- BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )
把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...
- 【SDOI2009】HH去散步(矩阵快速幂)
题面 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是 ...
- BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)
题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- bzoj1875: [SDOI2009]HH去散步
终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...
- bzoj1875 [SDOI2009]HH去散步 矩阵快速幂
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一 ...
- 【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)
bzoj1875,懒得复制,戳我戳我 Solution: 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和 但又因为题目有要求不能走一样的边回去不是 ...
- [难题题解] [BZOJ1875] [SDOI2009] HH去散步
题目H有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人 ...
随机推荐
- Genymotion模拟器安装问题及解决(启动失败,模拟器不能联网)
安装Genymotion模拟器安装后启动不了,报错: 百度的解决方法是打开VMVBirtualox选中自己的设备点击设置—常规—将版本设置为图中箭头所指的: 但是我这样做的时候发现我的下拉列表中没有6 ...
- 开源ETL工具kettle系列之常见问题
开源ETL工具kettle系列之常见问题 摘要:本文主要介绍使用kettle设计一些ETL任务时一些常见问题,这些问题大部分都不在官方FAQ上,你可以在kettle的论坛上找到一些问题的答案 1. J ...
- Hyperledger Fabric CA User’s Guide——配置设置(四)
配置设置 Fabric CA提供了三种方案去配置Fabric CA服务端和客户端,优先顺序是: CLI flags(标识) 环境变量 配置文件 在本文档的其余部分中,我们将对配置文件进行更改.但是,可 ...
- (一)Hyperledger Fabric 1.1安装部署-基础环境搭建
在学习和开发hyperledger fabric的时候遇到了一些坑,现将自己的一些总结和心得整理如下,以期对大家有所帮助.本次使用的宿主机环境:ubuntu,版本:Ubuntu 16.04.3 LTS ...
- Laravel路由除了根目录全报404错误
Route::get('hello',function(){ return 'Hello World!'; }); 在laravel/app/Http/routes.php下添加上面的语句,然后再浏览 ...
- 奔跑吧DKY——团队Scrum冲刺阶段-Day 3
今日完成任务 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如果完成的任务为调研任务,需给出对应的调研总结博客链接:如果完成的任务为学习技术任务,需 ...
- 对it行业的一些看法
随着世界产业转移的加速,欧美.日本等发达国家将大量的软件开发业务转移到中国.印度等国家,随之而来的是这些国家对it人才的急切需求! 对比国内的大学生就业形势而言,无疑是it相关专业的毕业生就业压力较少 ...
- 【Leetcode】109. Convert Sorted List to Binary Search Tree
Question: Given a singly linked list where elements are sorted in ascending order, convert it to a h ...
- 关于VS2005中C#代码用F12转到定义时,总是显示从元数据的问题
元数据是:NET 程序集中的标记信息. 是在代码中选择了转到定义时候给定位的吧.因为没有找到源代码,VS通过反射读取元数据中的信息生成了那个. 解决方法: 1. 要把项目先添加到解决方案中. 2. 再 ...
- appium启动sdk的android模拟器
(1)启动sdk安装目录下的AVD Manager.exe (2)如下图,点击[create]按钮 (3)如下图,设置虚拟机的配置,至于Target中的:Android 4.4.2是在安装sdk的时候 ...