Space Ant
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3840   Accepted: 2397

Description

The most exciting space discovery occurred at the end of the 20th century. In 1999, scientists traced down an ant-like creature in the planet Y1999 and called it M11. It has only one eye on the left side of its head and just three feet all on the right side of its body and suffers from three walking limitations:
  1. It can not turn right due to its special body structure.
  2. It leaves a red path while walking.
  3. It hates to pass over a previously red colored path, and never does that.

The pictures transmitted by the Discovery space ship depicts that
plants in the Y1999 grow in special points on the planet. Analysis of
several thousands of the pictures have resulted in discovering a magic
coordinate system governing the grow points of the plants. In this
coordinate system with x and y axes, no two plants share the same x or y.

An M11 needs to eat exactly one plant in each day to stay alive.
When it eats one plant, it remains there for the rest of the day with no
move. Next day, it looks for another plant to go there and eat it. If
it can not reach any other plant it dies by the end of the day. Notice
that it can reach a plant in any distance.

The problem is to find a path for an M11 to let it live longest.

Input is a set of (x, y) coordinates of plants. Suppose A with the
coordinates (xA, yA) is the plant with the least y-coordinate. M11
starts from point (0,yA) heading towards plant A. Notice that the
solution path should not cross itself and all of the turns should be
counter-clockwise. Also note that the solution may visit more than two
plants located on a same straight line.

Input

The
first line of the input is M, the number of test cases to be solved (1
<= M <= 10). For each test case, the first line is N, the number
of plants in that test case (1 <= N <= 50), followed by N lines
for each plant data. Each plant data consists of three integers: the
first number is the unique plant index (1..N), followed by two positive
integers x and y representing the coordinates of the plant. Plants are
sorted by the increasing order on their indices in the input file.
Suppose that the values of coordinates are at most 100.

Output

Output
should have one separate line for the solution of each test case. A
solution is the number of plants on the solution path, followed by the
indices of visiting plants in the path in the order of their visits.

Sample Input

2
10
1 4 5
2 9 8
3 5 9
4 1 7
5 3 2
6 6 3
7 10 10
8 8 1
9 2 4
10 7 6
14
1 6 11
2 11 9
3 8 7
4 12 8
5 9 20
6 3 2
7 1 6
8 2 13
9 15 1
10 14 17
11 13 19
12 5 18
13 7 3
14 10 16

Sample Output

10 8 7 3 4 9 5 6 2 1 10
14 9 10 11 5 12 8 7 6 13 4 14 1 3 2

Source

【思路】

模拟+叉积

模拟行走过程,利用叉积判断。时间复杂度为O(n2logn)

【代码】

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = +;
const double eps = 1e-;
int dcmp(double x) {
if(fabs(x)<eps) return ; else return x<? -:;
} struct Pt {
double x,y; int r;
Pt (double x=,double y=) :x(x),y(y) {};
};
typedef Pt vec; vec operator - (Pt a,Pt b) { return vec(a.x-b.x,a.y-b.y); }
double cross(vec a,vec b) { return a.x*b.y-a.y*b.x; }
double dist(Pt a,Pt b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} Pt p[N];
int n,pos; bool cmp(Pt a,Pt b) {
double c=cross(a-p[pos],b-p[pos]);
if(dcmp(c)==) return dist(p[pos],a) < dist(p[pos],b);
else if(dcmp(c)<) return ; else return ;
} int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
FOR(i,,n-) {
scanf("%d%lf%lf",&p[i].r,&p[i].x,&p[i].y);
if(p[i].y<p[].y || p[i].y==p[].y && p[i].x<p[].x) swap(p[],p[i]);
}
pos=;
FOR(i,,n-)
sort(p+i,p+n,cmp) , pos++;
printf("%d",n);
FOR(i,,n-)
printf(" %d",p[i].r);
putchar('\n');
}
return ;
}

poj 1696 Space Ant(模拟+叉积)的更多相关文章

  1. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  2. POJ 1696 Space Ant(极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2489   Accepted: 1567 Descrip ...

  3. POJ 1696 Space Ant 卷包裹法

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3316   Accepted: 2118 Descrip ...

  4. POJ 1696 Space Ant(点积的应用)

    Space Ant 大意:有一仅仅蚂蚁,每次都仅仅向当前方向的左边走,问蚂蚁走遍全部的点的顺序输出.開始的点是纵坐标最小的那个点,開始的方向是開始点的x轴正方向. 思路:从開始点開始,每次找剩下的点中 ...

  5. 2018.07.04 POJ 1696 Space Ant(凸包卷包裹)

    Space Ant Time Limit: 1000MS Memory Limit: 10000K Description The most exciting space discovery occu ...

  6. poj 1696:Space Ant(计算几何,凸包变种,极角排序)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2876   Accepted: 1839 Descrip ...

  7. POJ 1696 Space Ant --枚举,模拟,贪心,几何

    题意: 有很多点,从最右下角的点开始走起,初始方向水平向右,然后以后每步只能向左边走,问最多能走多少个点. 解法: 贪心的搞的话,肯定每次选左边的与它夹角最小的点,然后走过去. 然后就是相当于模拟地去 ...

  8. POJ 1696 Space Ant 极角排序(叉积的应用)

    题目大意:给出n个点的编号和坐标,按逆时针方向连接着n个点,按连接的先后顺序输出每个点的编号. 题目思路:Cross(a,b)表示a,b的叉积,若小于0:a在b的逆时针方向,若大于0a在b的顺时针方向 ...

  9. POJ 1696 - Space Ant 凸包的变形

    Technorati Tags: POJ,计算几何,凸包 初学计算几何,引入polygon后的第一个挑战--凸包 此题可用凸包算法做,只要把压入凸包的点从原集合中排除即可,最终形成图形为螺旋线. 关于 ...

随机推荐

  1. 解决UIScrollView 的点击事件

    目前有两种方法 第一种 通过 Category 扩展 UIScrollView 对象,添加触摸事件,(不建议,后续扩展不方便)代码如下 @implementation UIScrollView (Ex ...

  2. Linux 内核学习的经典书籍及途径

    from:http://www.zhihu.com/question/19606660 知乎 Linux 内核学习的经典书籍及途径?修改 修改 写补充说明 举报   添加评论 分享 • 邀请回答   ...

  3. jQuery--Dom元素隐藏和显示原理(源码2.0.3)

    对于Dom元素显示和隐藏的操作,jQuery提供了比较方便的函数,我们也经常使用: 1. show() : 显示Dom元素2. hide() : 隐藏Dom元素3. toggle() : 改变Dom元 ...

  4. 在vmware 6.5+ubuntu12.04上安装VMware tools出现问题的分析

    笔者已经写了一篇关于安装"VMware Tools",以实现文件共享的文章,那篇文章对于你实现共享操作是足够了, 所以,倘若你赶时间不如直接去在虚拟机的linux中利用VMware ...

  5. ajax error函数

    老是去百度 还是自己记下来吧 $.ajax({ url: '/AJAX请求的URL', success: function (data) { alert(data); }, error: functi ...

  6. NET Core 整合Autofac和Castle

    NET Core 整合Autofac和Castle 阅读目录 前言: 1.ASP.NET Core中的Autofac 2.整合Castle的DynamicProxy 3.注意事项 回到目录 前言: 除 ...

  7. 如何快速正确的安装 Ruby, Rails 运行环境-b

    对于新入门的开发者,如何安装 Ruby, Ruby Gems 和 Rails 的运行环境可能会是个问题,本页主要介绍如何用一条靠谱的路子快速安装 Ruby 开发环境.次安装方法同样适用于产品环境! 系 ...

  8. 快速发展的Swift是否将淘汰Objective-C?

    随便拉上一个果粉说说这一年来苹果公司的成就,Apple Watch肯定排第一,再下来是iPhone破销量纪录及苹果30亿美元收购Beats Electronics,消息灵通的人说不定还会提到Apple ...

  9. WebService学习整理(一)——客户端三种调用方式整理

    1 WebService基础 1.1 作用 1,       WebService是两个系统的远程调用,使两个系统进行数据交互,如应用: 天气预报服务.银行ATM取款.使用邮箱账号登录各网站等. 2, ...

  10. Java多线程初学者指南(8):从线程返回数据的两种方法

    从线程中返回数据和向线程传递数据类似.也可以通过类成员以及回调函数来返回数据.但类成员在返回数据和传递数据时有一些区别,下面让我们来看看它们区别在哪. 一.通过类变量和方法返回数据 使用这种方法返回数 ...