题目描述

$master$ 对树上的求和非常感兴趣。他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的$k$次方和,而且每次的$k$可能是不同的。此处节点深度的定义是这个节点到根的路径上的边数。他把这个问题交给了$pupil$,但$pupil$ 并不会这么复杂的操作,你能帮他解决吗?

输入输出格式

输入格式:

第一行包含一个正整数n,表示树的节点数。

之后n-1行每行两个空格隔开的正整数i, j ,表示树上的一条连接点$i$和点$j$的边。

之后一行一个正整数m ,表示询问的数量。

之后每行三个空格隔开的正整数i, j, k,表示询问从点i到点j的路径上所有节点深度的k次方和。由于这个结果可能非常大,输出其对998244353取模的结果。

树的节点从1开始标号,其中1号节点为树的根。

输出格式:

对于每组数据输出一行一个正整数表示取模后的结果。

思路

对$k=1...50$全部预处理出来,然后就是LCA模板题了

#include <bits/stdc++.h>
using namespace std;
const long long maxn = 300000 + 10;
const long long MOD = 998244353;
long long n,m,dep[maxn],father[maxn][25],d[maxn][51];
vector<long long> edges[maxn];
inline long long quickpow(long long x,long long y) {
long long ans = 1;
for (;y;y >>= 1,x = x*x%MOD) if (y&1) ans = ans*x%MOD;
return ans;
}
inline void dfs(long long now,long long fa) {
dep[now] = dep[fa]+1;
for (long long j = 1;j <= 50;j++) d[now][j] = quickpow(dep[now],j)+d[fa][j];
for (long long i = 0;i < edges[now].size();i++)
if (edges[now][i] != fa) {
dfs(edges[now][i],now);
father[edges[now][i]][0] = now;
}
}
inline void init() {
for (long long j = 1;(1<<j) <= n;j++)
for (long long i = 1;i <= n;i++)
father[i][j] = father[father[i][j-1]][j-1];
}
inline long long lca(long long a,long long b) {
if (dep[a] < dep[b]) swap(a,b);
for (long long i = 20;i >= 0;i--)
if (dep[father[a][i]] >= dep[b]) a = father[a][i];
if (a == b) return a;
for (long long i = 20;i >= 0;i--)
if (father[a][i] != father[b][i]) {
a = father[a][i];
b = father[b][i];
}
return father[a][0];
}
int main() {
scanf("%lld",&n);
for (long long i = 1,u,v;i < n;i++) {
scanf("%lld%lld",&u,&v);
edges[u].push_back(v);
edges[v].push_back(u);
}
dep[1] = -1;
father[1][0] = 1;
dfs(1,1);
init();
scanf("%lld",&m);
while (m--) {
long long a,b,k,LCA;
scanf("%lld%lld%lld",&a,&b,&k);
LCA = lca(a,b);
printf("%lld\n",((d[a][k]+d[b][k])-(d[LCA][k]+d[father[LCA][0]][k]))%MOD);
}
return 0;
}

【BJOI2018】求和 - 倍增LCA的更多相关文章

  1. [BZOJ5293][BJOI2018]求和(倍增)

    裸的树上倍增. #include<cstdio> #include<cstring> #include<algorithm> #define rep(i,l,r) ...

  2. 【BZOJ5293】[BJOI2018]求和(前缀和,LCA)

    [BZOJ5293][BJOI2018]求和(前缀和,LCA) 题面 BZOJ 洛谷 题解 送分题??? 预处理一下\(k\)次方的前缀和. 然后求个\(LCA\)就做完了?... #include& ...

  3. bzoj5293: [Bjoi2018]求和

    题目链接 bzoj5293: [Bjoi2018]求和 题解 暴力 对于lca为1的好坑啊.... 代码 #include<cmath> #include<cstdio> #i ...

  4. P4427 [BJOI2018]求和

    P4427 [BJOI2018]求和 同[TJOI2018]教科书般的扭曲虚空 懒得写了(雾 #include<bits/stdc++.h> #define il inline #defi ...

  5. [板子]倍增LCA

    倍增LCA板子,没有压行,可读性应该还可以.转载请随意. #include <cstdio> #include <cstring> #include <algorithm ...

  6. 洛谷P3128 [USACO15DEC]最大流Max Flow [倍增LCA]

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

  7. Gym100685G Gadget Hackwrench(倍增LCA)

    题目大概说一棵边有方向的树,q个询问,每次询问结点u是否能走到v. 倍增LCA搞即可: 除了par[k][u]表示u结点往上走2k步到达的结点, 再加上upp[k][u]表示u结点往上走2k步经过边的 ...

  8. Codeforces 418d Big Problems for Organizers [树形dp][倍增lca]

    题意: 给你一棵有n个节点的树,树的边权都是1. 有m次询问,每次询问输出树上所有节点离其较近结点距离的最大值. 思路: 1.首先是按照常规树形dp的思路维护一个子树节点中距离该点的最大值son_di ...

  9. hdu 4674 Trip Advisor(缩点+倍增lca)

    花了一天半的时间,才把这道题ac= = 确实是道好题,好久没敲这么长的code了,尤其是最后的判定,各种销魂啊~ 题目中给出的条件最值得关注的就是:每个点最多只能在一个环内->原图是由一个个边连 ...

随机推荐

  1. 17 个 Python 特别实用的操作技巧,记得收藏!

    Python 是一门非常优美的语言,其简洁易用令人不得不感概人生苦短.在本文中,作者 Gautham Santhosh 带我们回顾了 17 个非常有用的 Python 技巧,例如查找.分割和合并列表等 ...

  2. Blazor带我重玩前端(四)

    布局 Blazor中的布局和MVC中的布局是类似的. 创建布局 新建一个Razor页面,所有新增的布局都要继承LayoutComponentBase,同时标识自定义内容的输出位置,即标识Body的位置 ...

  3. Netty 学习笔记(4) ------ EventLoopGroup

    EventLoopGroup负责管理Channel的事件处理任务,继承自java.util.concurrent包下的Executor,所以其结构类似与线程池,管理多个EventLoop. 而一个Ev ...

  4. vue学习(十四) 条件搜索框动态查询表中数据 数组的新方法

    //html <div id="app"> <label> 名称搜索关键字: <input type="text" clasa=& ...

  5. Mac Sourcetree克隆项目提示无效的url

    之前用SoucreTree拉去过另一个账号的git项目,今天创建了一个新的码云账号,克隆里面的项目是一直报错误 > 错误如下: > 原因以及解决方案:

  6. arcgis for js 如何用contains过滤数据

    添加全部数据 // 构建map容器 var view = new MapView({ container: 'mapId', map: map }); /******************** * ...

  7. PHP xpath() 函数

    定义和用法 xpath() 函数运行对 XML 文档的 XPath 查询.高佣联盟 www.cgewang.com 如果成功,该函数返回 SimpleXMLElements 对象的一个数组.如果失败, ...

  8. layui实现图片上传

    页面代码: <style> .uploadImgBtn2{ width: 120px; height: 92px; cursor: pointer; position: relative; ...

  9. 网络滴神,TCP!

     TCP在网络协议(网络协议见这篇文章)中的重要性就相当于女朋友对于程序员的重要一样,这么说你应该知道有多重要了吧. 1. 三次握手 TCP在进行数据的传输之前必须先建立连接,建立之后才能进行数据的传 ...

  10. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...