BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 12451 Solved: 5407
[Submit][Status][Discuss]
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
HINT
Source
感觉自己一直学的是假的斜率优化
推荐一篇写的比较好的博客
https://www.cnblogs.com/Paul-Guderian/p/7259491.html
#include<cstdio>
#include<cstring>
#include<bitset>
#include<cmath>
#include<algorithm>
#define int long long
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,L;
int Q[MAXN],S[MAXN],f[MAXN];
int sqr(int x){return x * x;}
double X(int x){return S[x] + L;}
double Y(int x){return f[x] + sqr( (S[x] + L - ) );}
double slope(int x,int y){return (Y(y) - Y(x)) / (X(y) - X(x));}
main()
{
//freopen("a.in","r",stdin);
//freopen("b.out","w",stdout);
N=read(),L=read();L++;
for(int i=;i<=N;i++) S[i]=read(),S[i]+=S[i-];
for(int i=;i<=N;i++) S[i]+=i;
int h=,t=;
for(int i=;i<=N;i++)
{
while(h<t&&slope(Q[h],Q[h+])<*S[i]) h++;
int x=Q[h];
f[i]=f[x]+sqr(S[i]-S[x]-L);
while(h<t&&slope(Q[t-],Q[t])>slope(Q[t-],i)) t--;
Q[++t]=i;
}
printf("%lld",f[N]);
return ;
}
BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性
[HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...
- 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...
- bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)
Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...
- [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...
- BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)
题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...
随机推荐
- Generics of a Higher Kind
http://adriaanm.github.io/files/higher.pdf https://www.atlassian.com/blog/archives/scala-types-of-a- ...
- webpack学习(二)
时下很火的react项目多用到webpack+ES6,本文只实践webpack的打包功能,不涉及react. 1.新建项目 新建的项目,命令模式下切换到项目根路径,用npm init命令生成packa ...
- 物理cpu与逻辑cpu概述
物理cpu与逻辑cpu概述(本博客属于转载部分内容:主要学习目的用于大数据平台Hadoop之yarn资源调度的配置) 一.yarn资源调度器中主要的资源分类 1.memory(内存) 2. ...
- code runner运行终端的目录设置
我的github:swarz,欢迎给老弟我++星星 该设置属性为 "code-runner.fileDirectoryAsCwd": true 设置为 true后,终端默认目录为运 ...
- [luogu3244 HNOI2015] 落忆枫音(容斥原理+拓扑排序)
传送门 Description 给你一张 n 个点 m 条边的DAG,1 号节点没有入边.再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 . Input ...
- VirtualBox安装增强包实现文件共享
环境: win10 64位 Virtualbox 5.1.30 ubuntu-16.04.3-server-amd64.iso 1. 安装好ubuntu后,打开virtualbox安装路径文件夹,找到 ...
- zuul 路由网关
一.阐述 Zuul 包含了对请求的路由和过滤两个主要的功能: 路由功能:负责将外部请求转发到具体的微服务实例上,是实现外部访问统一入口的基础: 滤器功能:负责对请求的处理过程干预,是实现请求校验.服务 ...
- MySQL 面试题目
1, mysql的复制原理以及流程. (1)先问基本原理流程,3个线程以及之间的关联. (2)再问一致性,延时性,数据恢复. (3)再问各种工作遇到的复制bug的解决方法 2,mysql中myis ...
- 【高级算法】禁忌搜索算法解决3SAT问题(C++实现)
转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46440389 近期梳理,翻出了当年高级算法课程做的题目.禁忌搜索算法解决3SAT问 ...
- JAVA版本号微信公众账号开源项目版本号公布-jeewx1.0(捷微)
JeeWx, 敏捷微信开发,简称"捷微". 捷微是一款免费开源的微信公众账号开发平台. 平台介绍: 一.简单介绍 jeewx是一个开源,高效.敏捷的微信开发平台採用JAVA语言,它 ...