POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
依据题意可构造出方程组。方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki;
高斯消元构造上三角矩阵,以最后一个一行为例:
C*x9 = sum + 4*k。exgcd求出符合范围的x9,其它方程在代入已知的变量后格式亦如此。
第一发Gauss。蛮激动的。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <ctime> #pragma comment(linker, "/STACK:1024000000");
#define EPS (1e-8)
#define LL long long
#define ULL unsigned long long
#define _LL __int64
#define INF 0x3f3f3f3f
#define Mod 6000007 using namespace std; const int MAXN = 20; int up[] = {0,4,3,4,3,5,3,4,3,4}; int site[10][5] = {
{0},
{1,2,4,5},
{1,2,3},
{2,3,5,6},
{1,4,7},
{2,4,5,6,8},
{3,6,9},
{4,5,7,8},
{7,8,9},
{5,6,8,9}
}; int Map[10]; LL coe[MAXN][MAXN];
LL sol[MAXN]; void Output()
{
int i,j;
for(i = 1;i <= 9; ++i)
{
for(j = 1;j <= 10; ++j)
{
printf("%lld ",coe[i][j]);
if(j == 9)
printf("= ");
}
printf("\n");
}
puts("");
} LL Abs(LL x)
{
if(x < 0)
return -x;
return x;
} LL gcd(LL x,LL y)
{
if(y == 0)
return x;
return gcd(y,x%y);
} void exgcd(LL a,LL b,LL &x,LL &y)
{
if(b == 0)
x = 1,y = 0;
else
{
LL x1,y1;
exgcd(b,a%b,x1,y1);
x = y1;
y = x1-a/b*y1;
}
} //n为行数,m为列数(包括最后一项)
//return -1无整数解 return 0存在整数解。
int Gauss(int n,int m)
{
int i,j,k; LL T,A,B; //Output(); for(i = 1;i < n; ++i)
{
for(j = i+1;j <= n; ++j)
{
if(coe[j][i] == 0)
continue; if(coe[i][i] == 0)
{
for(k = i;k <= m; ++k)
T = coe[i][k],coe[i][k] = coe[j][k],coe[j][k] = T;
continue;
} T = gcd(coe[i][i],coe[j][i]);
A = coe[j][i]/T,B = coe[i][i]/T; for(k = i;k <= m; ++k)
coe[j][k] = coe[i][k]*A - coe[j][k]*B;
}
//Output();
} LL sum = 0; for(i = n;i >= 1; --i)
{
sum = coe[i][m];
for(j = m-1;j > i; --j)
sum -= coe[i][j]*sol[j]; LL A = coe[i][i],B = 4,C = sum;
LL x,y; exgcd(A,B,x,y);
//cout<<"A = "<<A<<" B = "<<B<<" C = "<<C<<" x = "<<x<<" y = "<<y<<endl;
x *= C/gcd(A,B);
//cout<<"x = "<<x<<endl;
y = B/gcd(A,B);
x = (x-x/y*y + Abs(y))%Abs(y);
sol[i] = x; //cout<<"i = "<<i<<" x = "<<x<<endl; // if(sum%coe[i][i] != 0)
// return -1;//此时无整数解
// sol[i] = sum/coe[i][i];
} return 0;
} int main()
{
int i,j; for(i = 1;i <= 9; ++i)
scanf("%d",&Map[i]); memset(coe,0,sizeof(coe)); for(i = 1;i <= 9; ++i)
{
for(j = 0;j < up[i]; ++j)
{
coe[site[i][j]][i] = 1;
}
} for(i = 1;i <= 9; ++i)
coe[i][10] = (4-Map[i])%4; if(-1 == Gauss(9,10))
while(0)
; bool mark = true; for(i = 1;i <= 9;++i)
{
for(j = 0;j < sol[i]; ++j)
{
if(mark == false)
printf(" ");
else
mark = false;
printf("%d",i);
}
} return 0;
}
POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)的更多相关文章
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- A - The Water Bowls POJ - 3185 (bfs||高斯消元)
题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...
- poj The Clocks 高斯消元
由于数据量不大,所以这题有很多解法. 我用的是高斯消元化为逆矩阵解决的…… 代码如下: #include<stdio.h> #include<iostream> using n ...
- POJ 2065 SETI(高斯消元)
题目链接:http://poj.org/problem?id=2065 题意:给出一个字符串S[1,n],字母a-z代表1到26,*代表0.我们用数组C[i]表示S[i]经过该变换得到的数字.给出一个 ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- Poj 2947 widget factory (高斯消元解同模方程)
题目连接: http://poj.org/problem?id=2947 题目大意: 有n种类型的零件,m个工人,每个零件的加工时间是[3,9],每个工人在一个特定的时间段内可以生产k个零件(可以相同 ...
- POJ 1753 Flip game ( 高斯消元枚举自由变量)
题目链接 题意:给定一个4*4的矩阵,有两种颜色,每次反转一个颜色会反转他自身以及上下左右的颜色,问把他们全变成一种颜色的最少步数. 题解:4*4的矩阵打表可知一共有四个自由变元,枚举变元求最小解即可 ...
- POJ 3532 Resistance(高斯消元+基尔霍夫定理)
[题目链接] http://poj.org/problem?id=3532 [题目大意] 给出n个点,一些点之间有电阻相连,求1~n的等效电阻 [题解] 有基尔霍夫定理:任何一个点(除起点和终点)发出 ...
- poj 1753 Flip Game 高斯消元
题目链接 4*4的格子, 初始为0或1, 每次翻转一个会使它四周的也翻转, 求翻转成全0或全1最少的步数. #include <iostream> #include <vector& ...
随机推荐
- MD markdown入门
1.Headings: 2.Phrase emphasis *italic text* **Bold text** 3.Listing items (在文字之前添加 + , - 或者 * ) -ite ...
- CSUOJ 1551 Longest Increasing Subsequence Again
1551: Longest Increasing Subsequence Again Time Limit: 2 Sec Memory Limit: 256 MBSubmit: 75 Solved ...
- 洛谷 P3040 [USACO12JAN]贝尔分享Bale Share
P3040 [USACO12JAN]贝尔分享Bale Share 题目描述 Farmer John has just received a new shipment of N (1 <= N & ...
- 几种类型的db,以及最新的db排名,看一下
5月数据库排名: http://geek.csdn.net/news/detail/196118 另外这篇文章里面提到了一些内嵌式数据库: http://blog.csdn.net/leagoal/a ...
- C#最简单的登录Web服务
因为演示程序,所以有下面问题: 1.password是明码传输. 本文在 C#建立最简单的web服务,无需IIS 的基础上完毕. 详细步骤: 一.RequestProcessor添加变量mLogi ...
- OpenLayers3基础教程——OL3之Popup
概述: 本节重点讲述OpenLayers3中Popup的调用时实现,OL3改用Overlay取代OL2的Popup功能. 接口简单介绍: overlay跟ol.control.Control一样,是一 ...
- Nginx安装以及配置
安装编译工具及库文件 1 yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-devel 安装 PCRE 下载 PC ...
- 戏说Linux商用数据库
戏说Linux商用数据库 上一篇文章(http://chenguang.blog.51cto.com/350944/277533)我介绍了Linux下几款开源数据库Mysql,MaxDB.Postgr ...
- 玲珑学院 1052 - See car
1052 - See car Time Limit:2s Memory Limit:64MByte Submissions:594Solved:227 DESCRIPTION You are the ...
- 自己动手写SSO(单点登录)
SSO在我们的应用中非常常见,例如我们在OA系统登录了,我们就可以直接进入采购系统,不需要再登录了,这样使我们非常方便.现在网上也有很多实现方法,于是乎我也想写一个看看.我主要用到的是cookie的机 ...