poj 2914(stoer_wanger算法求全局最小割)
题目链接:http://poj.org/problem?id=2914
思路:算法基于这样一个定理:对于任意s, t V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Contract(s, t)操作所得的图的全局最小割。 算法框架:
1. 设当前找到的最小割MinCut 为+∞ 。
2. 在 G中求出任意 s-t 最小割 c,MinCut = min(MinCut, c) 。
3. 对 G作 Contract(s, t)操作,得到 G'=(V', E'),若|V'| > 1,则G=G'并转 2,否则MinCut 为原图的全局最小割。
Contract 操作定义:
若不存在边(p, q),则定义边(p, q)权值w(p, q) = 0
Contract(a, b): 删掉点 a, b 及边(a, b),加入新节点 c,对于任意 v V ∈ ,w(v, c) = w(c, v) = w(a, v) + w(b, v).
求 G=(V, E)中任意 s-t 最小割的算法:
定义w(A, x) = ∑w(v[i], x),v[i] ∈ A
定义 Ax 为在x 前加入 A 的所有点的集合(不包括 x)
1. 令集合 A={a},a为 V中任意点
2. 选取 V - A中的 w(A, x)最大的点 x加入集合 A
3. 若|A|=|V|,结束
令倒数第二个加入 A的点为 s,最后一个加入 A的点为 t,则s-t 最小割为 w(At, t)。
贴下大牛的模版:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 555
#define inf 1<<30 int v[MAXN],dist[MAXN];
int map[MAXN][MAXN];
bool vis[MAXN];
int n,m; //求全局最小割的Stoer_Wanger算法
int Stoer_Wanger(int n)
{
int res=inf;
for(int i=;i<n;i++)v[i]=i;
while(n>){
int k=,pre=;//pre用来表示之前加入A集合的点,我们每次都以0点为第一个加入A集合的点
memset(vis,false,sizeof(vis));
memset(dist,,sizeof(dist));
for(int i=;i<n;i++){
k=-;
for(int j=;j<n;j++){
if(!vis[v[j]]){
dist[v[j]]+=map[v[pre]][v[j]];//dis数组用来表示该点与A集合中所有点之间的边的长度之和
if(k==-||dist[v[k]]<dist[v[j]]){
k=j;
}
}
}
vis[v[k]]=true;
if(i==n-){
res=min(res,dist[v[k]]);
//将该点合并到pre上,相应的边权就要合并
for(int j=;j<n;j++){
map[v[pre]][v[j]]+=map[v[j]][v[k]];
map[v[j]][v[pre]]+=map[v[j]][v[k]];
}
v[k]=v[--n];//删除最后一个点
}
pre=k;
}
}
return res;
} int main()
{
int u,v,w;
while(~scanf("%d%d",&n,&m)){
memset(map,,sizeof(map));
while(m--){
scanf("%d%d%d",&u,&v,&w);
map[u][v]+=w;
map[v][u]+=w;
}
int ans=Stoer_Wanger(n);
printf("%d\n",ans);
}
return ;
}
poj 2914(stoer_wanger算法求全局最小割)的更多相关文章
- POJ 2914 Minimum Cut (全局最小割)
[题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...
- SW算法求全局最小割(Stoer-Wagner算法)
我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...
- 求全局最小割(SW算法)
hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- 图的全局最小割的Stoer-Wagner算法及例题
Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案. 算法步骤: --------------------------- ...
- HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...
- UVALive 5099 Nubulsa Expo 全局最小割问题
B - Nubulsa Expo Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...
- poj2914 Minimum Cut 全局最小割模板题
Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 8324 Accepted: 3488 Case ...
- HDU 6081 度度熊的王国战略(全局最小割堆优化)
Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...
- HDU 3691 Nubulsa Expo(全局最小割)
Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...
随机推荐
- MSSQL数据库迁移到Oracle(二)
上一篇文章采用的PowerDesigner实现对MSSQL数据库迁移到Oracle,后来博友建议用ESF Database Migration Toolkit进行迁移会更加简单方便,本文就是通过一个实 ...
- margin外边距问题
1 .上下边距会叠加 !DOCTYPE html> <html> <head> <m<etacharset="UTF-8"> < ...
- IOS后台文件上传
public ModelAndView GetImage(HttpServletRequest request, HttpServletResponse response) throws Exce ...
- Android逆向之旅---SO(ELF)文件格式详解(转)
第一.前言 从今天开始我们正式开始Android的逆向之旅,关于逆向的相关知识,想必大家都不陌生了,逆向领域是一个充满挑战和神秘的领域.作为一名Android开发者,每个人都想去探索这个领域,因为一旦 ...
- jQuery自动加载更多程序(转)
jQuery自动加载更多程序 1.1.1 摘要 现在,我们经常使用的微博.微信或其他应用都有异步加载功能,简而言之,就是我们在刷微博或微信时,移动到界面的顶端或低端后程序通过异步的方式进行加载数据 ...
- 将XML格式的字符串封装成DOM对象
在java端将字符串转化为xml对象可以使用DocumentHelper.parseText(xmlReturn).getRootElement(); 在js中同样有方法可以将字符串转化为xml对象, ...
- 使用Apache Jmeter进行并发压力测试
http://blog.jassassin.com/2014/04/17/tools/jmeter/
- Atitit.md5 实现原理
Atitit.md5 实现原理 1. 算法流程图2 2. MD5算法过程:2 2.1. 3. 处理分组数据3 3. MD5加密字符串实例5 4. Md5的历史7 4.1.1. MD27 4.1.2. ...
- [k8s]监控
监控架构 参考 https://github.com/DataDog/the-monitor/blob/master/kubernetes/how-to-collect-and-graph-kuber ...
- [容器]docker创建镜像
手动创建: docker run -d -p mynginx:v2 nginx rpm -ivh http://mirrors.aliyun.com/epel/epel-release-latest- ...