C - Race to 1 Again

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a divisor of D(1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case begins with an integer N (1 ≤ N ≤ 105).

Output

For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.

Sample Input

3

1

2

50

Sample Output

Case 1: 0

Case 2: 2.00

Case 3: 3.0333333333

设dp[i]表示i变成1的期望次数,则
dp[i]=(SUM(dp[j])/k)+1,j为i的因子,k为其因子个数
然而当取其因子为1时,j=i/1=i,所以:dp[i]=((SUM(dp[j'])+dp[i])/k)+1,j'为i除开因子i的因子
整理:dp[i]=(SUM(dp[j'])+k)/(k-1)
记忆化搜索即可。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 100000 double dp[N+]; double dfs(int n)
{
if(n==) return dp[n]=;
if(dp[n]!=-) return dp[n];
int k=;
double s=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
if(i*i!=n)
{
k+=;
if(i!=n) s+=dfs(i);
if(n/i!=n) s+=dfs(n/i);
}
else
{
k+=;
if(i!=n) s+=dfs(i);
}
}
}
return dp[n]=(s+k)/(k-);
}
int main()
{
for(int i=;i<=N;i++) dp[i]=-;
int T,iCase=;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
dfs(n);
printf("Case %d: %.10f\n",iCase++,dp[n]);
}
return ;
}

[LOJ 1038] Race to 1 Again的更多相关文章

  1. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  2. Lightoj 1038 - Race to 1 Again (概率DP)

    题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...

  3. LightOJ 1038 - Race to 1 Again(期望+DP)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让 ...

  4. loj 1038(dp求期望)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25915 题意:求一个数不断地除以他的因子,直到变成1的时候 除的次 ...

  5. Light OJ 1038 - Race to 1 Again(概率DP)

    题目的意思是说任何一个大于1的整数,经过若干次除以自己的因子之后可以变为1, 求该变换字数的数学期望值.   题目分析: 我们设置dp[n] 为数字n的期望.假设n的因子为k1, k2, k3.... ...

  6. lightoj 1038 Race to 1 Again

    题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...

  7. LightOJ 1038 Race to 1 Again(概率dp+期望)

    https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...

  8. LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)

    题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...

  9. LightOJ - 1038 Race to 1 Again 递推+期望

    题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子.用D除上这个因子,然后继续按该规则运算.直到该数变成1 问变成1的期望步数是多少 ...

随机推荐

  1. WPF中的文字修饰

    我们知道,文字的修饰包括:空心字.立体字.划线字.阴影字.加粗.倾斜等.这里只说划线字的修饰方式,按划线的位置,我们可将之分为:上划线.中划线.基线与下划线.如图: 从上至下,分别为上划线(Overl ...

  2. EXTJS 4.2 资料 控件lable定义

    代码: { xtype:'label', id:'label', labelSeparator :'', // 去掉laebl中的冒号 fieldLabel : '这是个label' } 赋值: Ex ...

  3. 【android-cocos2d-X iconv.h】在android下使用iconv

    (1) 下载文件 首先下载iconv文件  下载地址:http://download.csdn.net/detail/dingkun520wy/6703113 把解压后的iconv文件夹放到cocos ...

  4. Schtasks 命令详解

    管理计划任务 SCHTASKS /parameter [arguments] 描述:     允许管理员创建.删除.查询.更改.运行和中止本地或远程系统上的计划任务. 参数列表:     /Creat ...

  5. OC 数据类型之间的转换方法

      NSNumber转NSString: 假设现有一NSNumber的变量A,要转换成NSString类型的B 方法如下: NSNumberFormatter* numberFormatter = [ ...

  6. ExtJS4.2学习(18)时间控件(转)

    鸣谢:http://www.shuyangyang.com.cn/jishuliangongfang/qianduanjishu/2013-12-22/190.html 感谢“束洋洋 ”的付出. 前言 ...

  7. AForm

    相信大部分程序员都接触过表单,表单是收集用户输入的不二之选,但是表单的开发又是最繁琐.最复杂的,简单地说,开发表单你需要涉及到很多知识: 布局,表单如何布局排版,看起来最清晰整洁,且符合用户体验 控件 ...

  8. [转载]OpenFileDialog对话框Filter属性

    首先说明一个示例,分析一下Filter属性的构成:“ Excel文件|*.xls ”,前面的“Excel文件”成为标签,是一个可读的字符串,可以自定定义,“|*.xls”是筛选器,表示筛选文件夹中后缀 ...

  9. 在WIN32 DLL中使用MFC

    最近用WIN32 DLL,为了方便要用到MFC的一些库,又不想转工程,就网上找了很多方法,发现没有详细的介绍,有的也行不通,现在成功在WIN32 DLL中使用了MFC,记录一下以防以后用到忘记 一.修 ...

  10. Object-C中emoji与json的问题

    遇到一个问题,要储存iOS键盘输出的emoji表情到MySQL,我知道用blob+utf8是可以存的.但是现在我的这张表已经太大了,不可能去改类型.所以就想把emoji表情匹配出来,替换掉,再存.但是 ...