题面

传送门

题解

调了咱一个上午……

首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示

首先,如果我们知道这个正\(n\)边形的转角,也就是它在水平的基础上转过了几度的话,那么可以把它的每个顶点和包含它的圆弧所代表的点连边,如果这个二分图存在完备匹配那么说明有解

然而我们并不知道这个多边形转过了几度

我们考虑一种可行的方案,如果它没有任何一个顶点和在一段圆弧的端点上,那么一定可以转一点点距离使其中一个顶点刚好落在一个圆弧的端点上,那么我们要考虑的转角实际上只有\(2n\)种

发现这是个正多边形,所以我们把所有的转角对\({2\pi\over n}\)取模,那么是等价的。然后把所有的转角从小到大排序,那么转角每次增大的时候只会新增一条边或者减少一条边。那么我们就不需要重新构图了,删边的时候直接退流,加边的时候看一下有没有新的增广路就行了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
#define gg(u) for(int &i=cur[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=605,M=N*N;const double Pi=acos(-1.0),eps=1e-8;
struct eg{int v,nx,w;}e[M];int head[N],tot;
inline void add(R int u,R int v,R int w){
e[++tot]={v,head[u],w},head[u]=tot;
e[++tot]={u,head[v],0},head[v]=tot;
}
int n,r,S,T,h,t,u,v,x,y,flow,cur[N],dep[N],q[N];
bool bfs(){
fp(i,S,T)cur[i]=head[i],dep[i]=-1;
q[h=t=1]=S,dep[S]=0;
while(h<=t){
u=q[h++];
go(u)if(dep[v]<0&&e[i].w){
dep[v]=dep[u]+1,q[++t]=v;
if(v==T)return true;
}
}
return false;
}
int dfs(int u,int lim){
if(u==T||!lim)return lim;
int fl=0,f;
gg(u)if(dep[v]==dep[u]+1&&(f=dfs(v,min(lim,e[i].w)))){
fl+=f,lim-=f,e[i].w-=f,e[i^1].w+=f;
if(!lim)break;
}if(!fl)dep[u]=-1;
return fl;
}
void del(int u,int v){
for(R int i=head[v],j=0;i;j=i,i=e[i].nx)
if(e[i].v==u){j?(e[j].nx=e[i].nx):(head[v]=e[i].nx);break;}
for(R int i=head[u],j=0;i;j=i,i=e[i].nx)
if(e[i].v==v){
j?(e[j].nx=e[i].nx):(head[u]=e[i].nx);
if(e[i].w)return;
break;
}
--flow;
for(int i=head[S];i;i=e[i].nx)if(e[i].v==u){e[i].w^=1,e[i^1].w^=1;break;}
for(int i=head[T];i;i=e[i].nx)if(e[i].v==v){e[i].w^=1,e[i^1].w^=1;break;}
if(bfs())flow+=dfs(S,inf);
}
struct point{
int x,y;double len;
point(){}
point(R int xx,R int yy):x(xx),y(yy){len=sqrt(x*x+y*y);}
}p[N];
struct node{
double t;int u,v,op;
node(){}
node(R double tt,R int uu,R int vv,R int oop):t(tt),u(uu),v(vv),op(oop){}
inline bool operator <(const node &b)const{return t==b.t?op>b.op:t<b.t;}
}st[N];
double alp,ql,qr,mid;
bool ck(double mid){
fp(i,S,T)head[i]=0;tot=1;
int top=0;
fp(i,1,n){
if(p[i].len+r<=mid)fp(j,1,n)add(i,j+n,1);
else{
R double t=acos((p[i].len*p[i].len+r*r-mid*mid)/(2*p[i].len*r));
R double base=atan2(p[i].y,p[i].x);
R double l=base-t,r=base+t;
l<0?l+=2*Pi:0,r<0?r+=2*Pi:0;
int ll=l/alp,rr=r/alp;
st[++top]=node(l-ll*alp,i,ll+1,1),
st[++top]=node(r-rr*alp,i,rr+1,-1);
++ll,++rr;
if(l<=r)fp(j,ll+1,rr)add(i,j+n,1);
else{
fp(j,ll+1,n)add(i,j+n,1);
fp(j,1,rr)add(i,j+n,1);
}
}
}
fp(i,1,n)add(S,i,1),add(i+n,T,1);
sort(st+1,st+1+top),flow=0;
while(bfs())flow+=dfs(S,inf);
if(flow==n)return true;
fp(i,1,top)if(st[i].op<0)del(st[i].u,st[i].v+n);
else{
add(st[i].u,st[i].v+n,1);
if(bfs())flow+=dfs(S,inf);
if(flow==n)return true;
}
return false;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),r=read(),alp=2*Pi/n;
S=0,T=n+n+1;
fp(i,1,n)x=read(),y=read(),p[i]=point(x,y),cmax(ql,fabs(p[i].len-r)),cmax(qr,p[i].len+r);
while(qr-ql>eps)ck(mid=(ql+qr)/2)?qr=mid:ql=mid;
printf("%.8lf\n",ql);
return 0;
}

洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)的更多相关文章

  1. 洛谷P4014 分配问题【最小/大费用流】题解+AC代码

    洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...

  2. 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】

    题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...

  3. 洛谷 P4016负载平衡问题【费用流】题解+AC代码

    洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...

  4. 洛谷 P4012 深海机器人问题【费用流】

    题目链接:https://www.luogu.org/problemnew/show/P4012 洛谷 P4012 深海机器人问题 输入输出样例 输入样例#1: 1 1 2 2 1 2 3 4 5 6 ...

  5. 【洛谷2053】 [SCOI2007]修车(费用流)

    传送门 洛谷 Solution 考虑把每一个修车工人拆成\(n\)个点,那么考虑令\(id(i,j)\)为第\(i\)个工人倒数第\(j\)次修车. 然后就可以直接跑费用流了!!! 代码实现 /* m ...

  6. 【洛谷2050】 [NOI2012]美食节(费用流)

    大家可以先看这道题目再做! SCOI2007修车 传送门 洛谷 Solution 就和上面那道题目一样的套路,但是发现你会获得60~80分的好成绩!!! 考虑优化,因为是SPFA,所以每一次只会走最短 ...

  7. 洛谷P3376【模板】网络最大流 ISAP

    这篇博客写得非常好呀. 传送门 于是我是DCOI这一届第一个网络流写ISAP的人了,之后不用再被YKK她们嘲笑我用Dinic了!就是这样! 感觉ISAP是会比Dinic快,只分一次层,然后不能增广了再 ...

  8. 洛谷P1330封锁阳光大学[二分图染色]

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  9. 洛谷 P3386 【模板】二分图匹配

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

随机推荐

  1. 用Dos黑窗口运行Cmd命令

    public class BlackWindow { private static BlackWindow _instance; public static BlackWindow Instance ...

  2. vs中的强大的代码段管理

    vs中的代码段管理可以实现大段固定文本的快捷输入,方法: 首先编写.snippet文件如: <?xml version="1.0" encoding="utf-8& ...

  3. Linux 学习笔记之 --- epoll 事件模型详解

    epoll 主要采用对已就绪的 fd 进行轮询操作   一.epoll 触发方式 epoll支持 ET 和 LT 两种触发方式 ET(边缘触发):Nginx 就是采用 ET 触发方式,只支持 no-b ...

  4. wordpress 学习笔记

    (1) __()函数 function __( $text, $domain = 'default' ) { return translate( $text, $domain ); } 返回一个字符串 ...

  5. 解决Axis2在webservice中遇到特殊字符的无法传输的缺陷(<CDATA>数据类型)

    在使用Axis2进行soa webservice开发时,遇到类似以下的错误信息: com.ctc.wstx.sw.BaseStreamWriter.writeCharacters(BaseStream ...

  6. 【总结整理】如何判断伪需求(摘自pmcafe)

    1.客户不会直接提需求,都是给解决方案,所以得到用户的反馈之后,先反推一下是很必要的,为什么客户会有这样的方案 总结:方案不合适 例如:客户只会说我要快马,反推一下,其实客户是想要更快,这样的话,解决 ...

  7. 3.Hive中查看数据来源文件和具体位置方法

    虚拟列 -- 当 hive 产生了非预期的或 null 的时候,可以通过虚拟列进行诊断,判断哪行数据出现问题 INPUT__FILE__NAME     (输入文件名)map任务读入File的全路径 ...

  8. Luogu 4755 Beautiful Pair

    分治 + 主席树. 设$solve(l, r)$表示当前处理到$[l, r]$区间的情况,我们可以找到$[l, r]$中最大的一个数的位置$mid$,然后扫一半区间计算一下这个区间的答案. 注意,这时 ...

  9. SQLite在php中的接口

    sqlite是一种比较轻型的嵌入式数据库,它与 SQL 之间的不同,为什么需要它,以及它的应用程序数据库处理方式.SQLite是一个软件库,实现了自给自足的.无服务器的.零配置的.事务性的 SQL 数 ...

  10. Django框架 之 跨域请求伪造

    Django框架 之 跨域请求伪造 浏览目录 同源策略与Jsonp 同源策略 Jsonp jQuery对JSONP的实现 CORS 简介 两种请求 同源策略与Jsonp 同源策略 同源策略(Same ...