洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)
题面
题解
调了咱一个上午……
首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示
首先,如果我们知道这个正\(n\)边形的转角,也就是它在水平的基础上转过了几度的话,那么可以把它的每个顶点和包含它的圆弧所代表的点连边,如果这个二分图存在完备匹配那么说明有解
然而我们并不知道这个多边形转过了几度
我们考虑一种可行的方案,如果它没有任何一个顶点和在一段圆弧的端点上,那么一定可以转一点点距离使其中一个顶点刚好落在一个圆弧的端点上,那么我们要考虑的转角实际上只有\(2n\)种
发现这是个正多边形,所以我们把所有的转角对\({2\pi\over n}\)取模,那么是等价的。然后把所有的转角从小到大排序,那么转角每次增大的时候只会新增一条边或者减少一条边。那么我们就不需要重新构图了,删边的时候直接退流,加边的时候看一下有没有新的增广路就行了
//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
#define gg(u) for(int &i=cur[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=605,M=N*N;const double Pi=acos(-1.0),eps=1e-8;
struct eg{int v,nx,w;}e[M];int head[N],tot;
inline void add(R int u,R int v,R int w){
e[++tot]={v,head[u],w},head[u]=tot;
e[++tot]={u,head[v],0},head[v]=tot;
}
int n,r,S,T,h,t,u,v,x,y,flow,cur[N],dep[N],q[N];
bool bfs(){
fp(i,S,T)cur[i]=head[i],dep[i]=-1;
q[h=t=1]=S,dep[S]=0;
while(h<=t){
u=q[h++];
go(u)if(dep[v]<0&&e[i].w){
dep[v]=dep[u]+1,q[++t]=v;
if(v==T)return true;
}
}
return false;
}
int dfs(int u,int lim){
if(u==T||!lim)return lim;
int fl=0,f;
gg(u)if(dep[v]==dep[u]+1&&(f=dfs(v,min(lim,e[i].w)))){
fl+=f,lim-=f,e[i].w-=f,e[i^1].w+=f;
if(!lim)break;
}if(!fl)dep[u]=-1;
return fl;
}
void del(int u,int v){
for(R int i=head[v],j=0;i;j=i,i=e[i].nx)
if(e[i].v==u){j?(e[j].nx=e[i].nx):(head[v]=e[i].nx);break;}
for(R int i=head[u],j=0;i;j=i,i=e[i].nx)
if(e[i].v==v){
j?(e[j].nx=e[i].nx):(head[u]=e[i].nx);
if(e[i].w)return;
break;
}
--flow;
for(int i=head[S];i;i=e[i].nx)if(e[i].v==u){e[i].w^=1,e[i^1].w^=1;break;}
for(int i=head[T];i;i=e[i].nx)if(e[i].v==v){e[i].w^=1,e[i^1].w^=1;break;}
if(bfs())flow+=dfs(S,inf);
}
struct point{
int x,y;double len;
point(){}
point(R int xx,R int yy):x(xx),y(yy){len=sqrt(x*x+y*y);}
}p[N];
struct node{
double t;int u,v,op;
node(){}
node(R double tt,R int uu,R int vv,R int oop):t(tt),u(uu),v(vv),op(oop){}
inline bool operator <(const node &b)const{return t==b.t?op>b.op:t<b.t;}
}st[N];
double alp,ql,qr,mid;
bool ck(double mid){
fp(i,S,T)head[i]=0;tot=1;
int top=0;
fp(i,1,n){
if(p[i].len+r<=mid)fp(j,1,n)add(i,j+n,1);
else{
R double t=acos((p[i].len*p[i].len+r*r-mid*mid)/(2*p[i].len*r));
R double base=atan2(p[i].y,p[i].x);
R double l=base-t,r=base+t;
l<0?l+=2*Pi:0,r<0?r+=2*Pi:0;
int ll=l/alp,rr=r/alp;
st[++top]=node(l-ll*alp,i,ll+1,1),
st[++top]=node(r-rr*alp,i,rr+1,-1);
++ll,++rr;
if(l<=r)fp(j,ll+1,rr)add(i,j+n,1);
else{
fp(j,ll+1,n)add(i,j+n,1);
fp(j,1,rr)add(i,j+n,1);
}
}
}
fp(i,1,n)add(S,i,1),add(i+n,T,1);
sort(st+1,st+1+top),flow=0;
while(bfs())flow+=dfs(S,inf);
if(flow==n)return true;
fp(i,1,top)if(st[i].op<0)del(st[i].u,st[i].v+n);
else{
add(st[i].u,st[i].v+n,1);
if(bfs())flow+=dfs(S,inf);
if(flow==n)return true;
}
return false;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),r=read(),alp=2*Pi/n;
S=0,T=n+n+1;
fp(i,1,n)x=read(),y=read(),p[i]=point(x,y),cmax(ql,fabs(p[i].len-r)),cmax(qr,p[i].len+r);
while(qr-ql>eps)ck(mid=(ql+qr)/2)?qr=mid:ql=mid;
printf("%.8lf\n",ql);
return 0;
}
洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)的更多相关文章
- 洛谷P4014 分配问题【最小/大费用流】题解+AC代码
洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...
- 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】
题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...
- 洛谷 P4016负载平衡问题【费用流】题解+AC代码
洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...
- 洛谷 P4012 深海机器人问题【费用流】
题目链接:https://www.luogu.org/problemnew/show/P4012 洛谷 P4012 深海机器人问题 输入输出样例 输入样例#1: 1 1 2 2 1 2 3 4 5 6 ...
- 【洛谷2053】 [SCOI2007]修车(费用流)
传送门 洛谷 Solution 考虑把每一个修车工人拆成\(n\)个点,那么考虑令\(id(i,j)\)为第\(i\)个工人倒数第\(j\)次修车. 然后就可以直接跑费用流了!!! 代码实现 /* m ...
- 【洛谷2050】 [NOI2012]美食节(费用流)
大家可以先看这道题目再做! SCOI2007修车 传送门 洛谷 Solution 就和上面那道题目一样的套路,但是发现你会获得60~80分的好成绩!!! 考虑优化,因为是SPFA,所以每一次只会走最短 ...
- 洛谷P3376【模板】网络最大流 ISAP
这篇博客写得非常好呀. 传送门 于是我是DCOI这一届第一个网络流写ISAP的人了,之后不用再被YKK她们嘲笑我用Dinic了!就是这样! 感觉ISAP是会比Dinic快,只分一次层,然后不能增广了再 ...
- 洛谷P1330封锁阳光大学[二分图染色]
题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...
- 洛谷 P3386 【模板】二分图匹配
题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...
随机推荐
- 转:Python正则表达式指南
本文介绍了Python对于正则表达式的支持,包括正则表达式基础以及Python正则表达式标准库的完整介绍及使用示例.本文的内容不包括如何编写高效的正则表达式.如何优化正则表达式,这些主题请查看其他教程 ...
- 转gif图
用QQ影音截取影片 + Ulead GIF Animator510编辑.
- vue 构建前端项目并关联github
这几天尝试用node开发一个网站,后端的接口已经初步开发完成,现在开始构建前端的项目,记录下过程,在学习下吧. 用vue-cli 构建项目,myproject.(构架过程略过) 每次在本地构建项目后和 ...
- Spring Cloud Eureka 4 (高可用服务注册中心)
在微服务这样的分布式环境中,我们需要充分考虑发生故障的情况,所以在生产环境中必须考虑对各个组件进行高可用部署,对于服务注册中心也是一样. Eureka Server 的高可用实际上就是讲自己作为服务向 ...
- 记录MongoDB常用查询
{$and:[{"}}]} // flag不等于1 也不等于0 {$or:[{"flag" :{ $ne:"1"}},{"flag" ...
- 201671010127 2016—2017-2 通过一个小程序对Java的再认识。
学习了将近四周的Java语言,对于Java语言,我也有了更进一步的理解,出于对Java语言的喜爱,我总是喜欢没事的时候,自己敲一些很简单的代码,一边学习Java语言,一边对比C语言,往往可以帮助我们更 ...
- 06-Location详解之精准匹配
之前nginx不是编译过吗?现在重新make install一下. 刚刚这个是我们新安装的.原始版的nginx,配置文件比较少,便于我们做调试. 试试精准匹配的概念. 匹配的是/.优先匹配这个最精准的 ...
- 面试题:彻底理解ThreadLocal 索引的利弊 背1
.索引利弊 --整理 1.索引的好处 a.提高数据检索的效率,降低检索过程中必须要读取得数据量,降低数据库IO成本. b.降低数据库的排序成本.因为索引就是对字段数据进行排序后存储的,如果待排序的 ...
- Java方法学习疑问
此方法不理解 finalize() 方法 Java允许定义这样的方法,它在对象被垃圾收集器析构(回收)之前调用,这个方法叫做finalize( ),它用来清除回收对象. 例如,你可以使用finaliz ...
- 登录到 SQL Server 实例
登录到 SQL Server 实例(命令提示符) 登录到 SQL Server 的默认实例 从命令提示符输入以下命令,使用 Windows 身份验证进行连接: sqlcmd [ /E ] ...