51nod 1967路径定向(欧拉回路)
题目大意:给出一个图,安排边的方向,使得入度等于出度的点数最多,并给出方案。
首先假设是个无向图,不妨认定偶点必定可以满足条件
我们还会发现,奇点的个数必定是偶数个
那么如果把奇点两两用辅助边连起来,对全图求一个欧拉回路,就可以得到这个方案
因为奇点肯定不会是答案点,所以奇点连起来不会有影响
这时的欧拉回路就可以保证所有偶点满足入度等于出度
这里为了简便,写的是dfs出欧拉道路,因为欧拉道路同样可以满足要求
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define fi first
#define se second
using namespace std;
typedef pair<int, int> PII;
const int maxn = 1e6 + ;
int du[maxn], f[maxn];
vector<PII> edges;
vector<int> G[maxn], V;
int n, m, x, y; void dfs(int x){
for(auto i : G[x]){
if(f[i]) continue;
auto e = edges[i];
if(e.fi != x) f[i] = ;
else f[i] = ;
dfs(e.fi == x ? e.se : e.fi);
}
} int main()
{
cin>>n>>m;
for(int i = ; i < m; i++){
scanf("%d %d", &x, &y);
edges.push_back({x, y});
G[x].push_back(i);
G[y].push_back(i);
du[x]++; du[y]++;
}
for(int i = ; i <= n; i++) if(du[i]&) V.push_back(i);
int M = m;
for(int i = ; i < V.size(); i += ){
x = V[i];
y = V[i+];
edges.push_back({x, y});
m++;
G[x].push_back(m-);
G[y].push_back(m-);
}
for(int i = ; i <= n; i++) dfs(i);
cout<<n - V.size()<<endl;
for(int i = ; i < M; i++){
if(f[i] == ) putchar('');
else putchar('');
}
}
51nod 1967路径定向(欧拉回路)的更多相关文章
- 51Nod 1967 路径定向 —— 欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 显然是欧拉回路问题,度数为奇数的点之间连边,跑欧拉回路就可以 ...
- 51nod 1967 路径定向——欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 一共只会有偶数个奇数度的点.因为每多一条边,总度数加2. 把 ...
- 51nod 1967路径定向(dfs、欧拉回路)
1967 路径定向 基准时间限制:1.2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 给出一个有向图,要求给每条边重定向,使得定向后出度等于入度的点最多,输出答案和任意一种方案 ...
- 51nod 1967 路径定向(不错的欧拉回路)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 题意: 思路: 出度=入度,这很容易想到欧拉回路,事实上,这道题目 ...
- 51nod1967 路径定向(欧拉回路+结论题)
看到入度等于出度想到欧拉回路. 我们把边都变成无向边,有一个结论是偶数度的点都可以变成出入度相等的点,而奇数点的不行,感性理解分类讨论一下就知道是对的. 还有一个更好理解的结论是变成无向边后奇数点的个 ...
- 51nod1967 路径定向 Fleury
题目传送门 题解 几乎是Fleury模板题. 一开始我们把图看作无向图,然后对于度为奇数的点增边,使得整个图的所有点都是偶数的. 然后跑一遍欧拉回路 Fleury ,所有的边就定向好了~ 代码 #in ...
- 51nod 1443 路径和树(最短路)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1443 1443 路径和树 题目来源: CodeForces ...
- 51nod 1443 路径和树(最短路树)
题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...
- 【题解】51nod1967 路径定向
第一次写欧拉回路,实际上只要dfs下去就可以了,反正每条边都是要遍历一遍的…… 关键有两个性质:1.一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图.2.一个有向图存在欧拉回路 ...
随机推荐
- web3.js_1.x.x--API(一)event/Constant/deploy/options
/* 事件是使用EVM日志内置功能的方便工具,在DAPP的接口中,它可以反过来调用Javascript的监听事件的回调. 事件在合约中可被继承.当被调用时,会触发参数存储到交易的日志中(一种区块链上的 ...
- Mysql导出表结构和数据
导出数据库 -- 导出dbname表结构 mysqldump -uroot -p123456 -d dbname > dbname.sql -- 导出dbname表数据 mysqldump -u ...
- 12.2.1 访问元素的样式【JavaScript高级程序设计第三版】
任何支持style 特性的HTML 元素在JavaScript 中都有一个对应的style 属性.这个style 对象是CSSStyleDeclaration 的实例,包含着通过HTML 的style ...
- JavaSE 第二次学习随笔(二)
循环结构中的多层嵌套跳出 targeta: for(int i = 0; i < 100; i++){ for (int j = 0; j < 100; j++) { if(i + j = ...
- DESCRIBEFIELD
実行時データ型識別.略語は RTTI です.プログラム実行時にデータ型を識別して処理を行う仕組みです.. DESCRIBE FIELD命令を使用 DESCRIBE FIELD命令を使用して.変数のデー ...
- RHCE7认证学习笔记17——KickStart安装系统
一.自动化安装系统工具 1.Cobbler 另一个自动化安装工具: 2.Kickstart 二.使用kickstart自动化安装系统 服务器安装的软件: 1.dhcp服务 [root@lin ...
- jmeter设置全局变量的方法
需求: 同一个线程组内有两个http请求A.B,A请求的后置处理器中存储的有值,B请求中添加用户变量Va先要引用该值,然后B请求的前置处理器再引用用户变量va. 第一种方式: 1.A请求后置处理添加如 ...
- jmeter操作JDBC
1. 依次添加计划.线程组.JDBC Connection Configuration.JDBC Request.HTTP请求.Debug Sampler.察看结果树 在计划中导入mysql的jdbc ...
- 虚拟现实-VR-UE4-编译源代码后,无法运行
情况是这个样,在一开始我编译后,是可以运行,但是当我重新做系统后,再次运行时,每次都是到加载的18%的时候提示了如下错误 具体解决方法还没有找到,正在努力找中.........,会后续更新 同时希望有 ...
- laravel跨域问题
// 只有同源策略才允许发送cookies // header('Access-Control-Allow-Credentials:true'); 需要要index.php下开启 最近写登录图形验证码 ...