题目大意:给出一个图,安排边的方向,使得入度等于出度的点数最多,并给出方案。

首先假设是个无向图,不妨认定偶点必定可以满足条件

我们还会发现,奇点的个数必定是偶数个

那么如果把奇点两两用辅助边连起来,对全图求一个欧拉回路,就可以得到这个方案

因为奇点肯定不会是答案点,所以奇点连起来不会有影响

这时的欧拉回路就可以保证所有偶点满足入度等于出度

这里为了简便,写的是dfs出欧拉道路,因为欧拉道路同样可以满足要求

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define fi first
#define se second
using namespace std;
typedef pair<int, int> PII;
const int maxn = 1e6 + ;
int du[maxn], f[maxn];
vector<PII> edges;
vector<int> G[maxn], V;
int n, m, x, y; void dfs(int x){
for(auto i : G[x]){
if(f[i]) continue;
auto e = edges[i];
if(e.fi != x) f[i] = ;
else f[i] = ;
dfs(e.fi == x ? e.se : e.fi);
}
} int main()
{
cin>>n>>m;
for(int i = ; i < m; i++){
scanf("%d %d", &x, &y);
edges.push_back({x, y});
G[x].push_back(i);
G[y].push_back(i);
du[x]++; du[y]++;
}
for(int i = ; i <= n; i++) if(du[i]&) V.push_back(i);
int M = m;
for(int i = ; i < V.size(); i += ){
x = V[i];
y = V[i+];
edges.push_back({x, y});
m++;
G[x].push_back(m-);
G[y].push_back(m-);
}
for(int i = ; i <= n; i++) dfs(i);
cout<<n - V.size()<<endl;
for(int i = ; i < M; i++){
if(f[i] == ) putchar('');
else putchar('');
}
}

51nod 1967路径定向(欧拉回路)的更多相关文章

  1. 51Nod 1967 路径定向 —— 欧拉回路

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 显然是欧拉回路问题,度数为奇数的点之间连边,跑欧拉回路就可以 ...

  2. 51nod 1967 路径定向——欧拉回路

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 一共只会有偶数个奇数度的点.因为每多一条边,总度数加2. 把 ...

  3. 51nod 1967路径定向(dfs、欧拉回路)

    1967 路径定向 基准时间限制:1.2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 给出一个有向图,要求给每条边重定向,使得定向后出度等于入度的点最多,输出答案和任意一种方案 ...

  4. 51nod 1967 路径定向(不错的欧拉回路)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 题意: 思路: 出度=入度,这很容易想到欧拉回路,事实上,这道题目 ...

  5. 51nod1967 路径定向(欧拉回路+结论题)

    看到入度等于出度想到欧拉回路. 我们把边都变成无向边,有一个结论是偶数度的点都可以变成出入度相等的点,而奇数点的不行,感性理解分类讨论一下就知道是对的. 还有一个更好理解的结论是变成无向边后奇数点的个 ...

  6. 51nod1967 路径定向 Fleury

    题目传送门 题解 几乎是Fleury模板题. 一开始我们把图看作无向图,然后对于度为奇数的点增边,使得整个图的所有点都是偶数的. 然后跑一遍欧拉回路 Fleury ,所有的边就定向好了~ 代码 #in ...

  7. 51nod 1443 路径和树(最短路)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1443 1443 路径和树 题目来源: CodeForces ...

  8. 51nod 1443 路径和树(最短路树)

    题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...

  9. 【题解】51nod1967 路径定向

    第一次写欧拉回路,实际上只要dfs下去就可以了,反正每条边都是要遍历一遍的…… 关键有两个性质:1.一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图.2.一个有向图存在欧拉回路 ...

随机推荐

  1. jQuery代码解释(基本语法)

    html中jquery的以下用法 求解: var header = {}; header.ajaxCallComplete = false; header.login = false; header. ...

  2. cnpm 下载

    1, 如果电脑已经有node的话,可以先卸载,然后再去node官网下载最新node, 2,先全局安装cnpm, npm install -g cnpm --registry=https://regis ...

  3. Python基本图形绘制

    turtle的一个画布空间最小单位是像素 turtle的绘制窗体:turtle.stup(width,heigth,startx,starty) 四个参数中后两个可选 turtle空间坐标体系:tur ...

  4. python 装饰器 回顾 及练习

    # 复习 # 讲作业 # 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数 # 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 ...

  5. Redis缓存数据库的安装与配置(1)

    1.安装 tarxf redis-3.2.5.tar.gz cd redis-3.2.5 make mkdir -p /usr/local/redis/bin src目录下这些文件作用如下 redis ...

  6. UVA11988 Broken Keyboard (a.k.a. Beiju Text)【数组模拟链表】

    参考:https://blog.csdn.net/lianai911/article/details/41831645 #include <iostream> #include <c ...

  7. spark优化系列一:参数介绍

    1 spark on yarn常用属性介绍 属性名 默认值 属性说明 spark.yarn.am.memory 512m 在客户端模式(client mode)下,yarn应用master使用的内存数 ...

  8. Android开发——Google关于Application Not Responding的建议

    秒内没有执行完毕. 2.       避免ANR的一些建议 Android applications normally run entirely on asingle (i.e. main) thre ...

  9. NoSQL简单学习(一)

    只是简单的知道有这个东西,却从来没有去接触,今天看了几篇文章,记录一下,开始慢慢接触这一领域 简介: 8种Nosql数据库系统对比 http://blog.jobbole.com/1344/ 一网打尽 ...

  10. cf#513 B. Maximum Sum of Digits

    B. Maximum Sum of Digits time limit per test 2 seconds memory limit per test 512 megabytes input sta ...