51nod 1967路径定向(欧拉回路)
题目大意:给出一个图,安排边的方向,使得入度等于出度的点数最多,并给出方案。
首先假设是个无向图,不妨认定偶点必定可以满足条件
我们还会发现,奇点的个数必定是偶数个
那么如果把奇点两两用辅助边连起来,对全图求一个欧拉回路,就可以得到这个方案
因为奇点肯定不会是答案点,所以奇点连起来不会有影响
这时的欧拉回路就可以保证所有偶点满足入度等于出度
这里为了简便,写的是dfs出欧拉道路,因为欧拉道路同样可以满足要求
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define fi first
#define se second
using namespace std;
typedef pair<int, int> PII;
const int maxn = 1e6 + ;
int du[maxn], f[maxn];
vector<PII> edges;
vector<int> G[maxn], V;
int n, m, x, y; void dfs(int x){
for(auto i : G[x]){
if(f[i]) continue;
auto e = edges[i];
if(e.fi != x) f[i] = ;
else f[i] = ;
dfs(e.fi == x ? e.se : e.fi);
}
} int main()
{
cin>>n>>m;
for(int i = ; i < m; i++){
scanf("%d %d", &x, &y);
edges.push_back({x, y});
G[x].push_back(i);
G[y].push_back(i);
du[x]++; du[y]++;
}
for(int i = ; i <= n; i++) if(du[i]&) V.push_back(i);
int M = m;
for(int i = ; i < V.size(); i += ){
x = V[i];
y = V[i+];
edges.push_back({x, y});
m++;
G[x].push_back(m-);
G[y].push_back(m-);
}
for(int i = ; i <= n; i++) dfs(i);
cout<<n - V.size()<<endl;
for(int i = ; i < M; i++){
if(f[i] == ) putchar('');
else putchar('');
}
}
51nod 1967路径定向(欧拉回路)的更多相关文章
- 51Nod 1967 路径定向 —— 欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 显然是欧拉回路问题,度数为奇数的点之间连边,跑欧拉回路就可以 ...
- 51nod 1967 路径定向——欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 一共只会有偶数个奇数度的点.因为每多一条边,总度数加2. 把 ...
- 51nod 1967路径定向(dfs、欧拉回路)
1967 路径定向 基准时间限制:1.2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 给出一个有向图,要求给每条边重定向,使得定向后出度等于入度的点最多,输出答案和任意一种方案 ...
- 51nod 1967 路径定向(不错的欧拉回路)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 题意: 思路: 出度=入度,这很容易想到欧拉回路,事实上,这道题目 ...
- 51nod1967 路径定向(欧拉回路+结论题)
看到入度等于出度想到欧拉回路. 我们把边都变成无向边,有一个结论是偶数度的点都可以变成出入度相等的点,而奇数点的不行,感性理解分类讨论一下就知道是对的. 还有一个更好理解的结论是变成无向边后奇数点的个 ...
- 51nod1967 路径定向 Fleury
题目传送门 题解 几乎是Fleury模板题. 一开始我们把图看作无向图,然后对于度为奇数的点增边,使得整个图的所有点都是偶数的. 然后跑一遍欧拉回路 Fleury ,所有的边就定向好了~ 代码 #in ...
- 51nod 1443 路径和树(最短路)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1443 1443 路径和树 题目来源: CodeForces ...
- 51nod 1443 路径和树(最短路树)
题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...
- 【题解】51nod1967 路径定向
第一次写欧拉回路,实际上只要dfs下去就可以了,反正每条边都是要遍历一遍的…… 关键有两个性质:1.一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图.2.一个有向图存在欧拉回路 ...
随机推荐
- php获取客户端IP地址、所在地、操作系统、浏览器信息
本实例主要实现获取客户端的IP,再根据获取的IP获取所在地,还可以获取用户当前电脑使用的操作系统以及用户是通过什么浏览器进行访问的. 您可以在这里查看具体演示和下载demo http://www.j ...
- python-三级菜单的优化实现
三级菜单需求: 1.可依次选择进入各子菜单 2.可从任意一层往回退到上一层 3.可从任意一层退出程序 所需新知识点:列表.字典 先通过字典建立数据结构 #创建字典 city_dic = { " ...
- Altium Designer -- 精心总结
如需转载请注明出处:http://blog.csdn.NET/qq_29350001/article/details/52199356 以前是使用DXP2004来画图的,后来转行.想来已经有一年半的时 ...
- java中array,arrayList,iterator;
Array String []a = new String[10] ; a[0] = "test" ; String []a = new String[]{&quo ...
- 不得不服!Python速度虽然慢,但是它工作效率很高!
写在前面 让我们来讨论一个我最近一直在思考的问题:Python 的性能.顺便说一下,我是 Python 的忠实拥趸,我在各种情况下都会积极尝试使用 Python 来解决问题.大家对 Python 最大 ...
- spring多个定时任务quartz配置
spring多个定时任务quartz配置 <?xml version=”1.0″ encoding=”UTF-8″?> <beans xmlns=”http://www.spring ...
- 命令行编译 WPF
在开发调试代码 WPF 时,经常需要在修改完成代码后,点击 Rebuild,然后到指定文件夹下点击打开对应的 .exe 验证程序是否正确, 可以通过以下命名实现修改程序后,点击一个 .bat 文件,直 ...
- DCGAN: "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network" Notes
- Alec Radford, ICLR2016 原文:https://arxiv.org/abs/1511.06434 论文翻译:https://www.cnblogs.com/lyrichu/p/ ...
- flask - 1
from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello, Worl ...
- centos tomcat开机自启
在 /etc/rc.local 下 输入tomcat bin目录下的startup.sh /usr/tomcat8/bin/startup.sh 即可