摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助。

本文分享自华为云社区《[Python图像处理] 十六.图像的灰度非线性变换之对数变换、伽马变换》,作者:eastmount 。

本篇文章主要讲解非线性变换,使用自定义方法对图像进行灰度化处理,包括对数变换和伽马变换。

一.图像灰度非线性变换

图像的灰度非线性变换主要包括对数变换、幂次变换、指数变换、分段函数变换,通过非线性关系对图像进行灰度处理,下面主要讲解三种常见类型的灰度非线性变换。

原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度非线性变换:DB=DA×DA/255
for i in range(height):
for j in range(width):
gray = int(grayImage[i,j])*int(grayImage[i,j]) / 255
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

图像灰度非线性变换的输出结果下图所示:

二.图像灰度对数变换

图像灰度的对数变换一般表示如公式所示:

其中c为尺度比较常数,DA为原始图像灰度值,DB为变换后的目标灰度值。如下图所示,它表示对数曲线下的灰度值变化情况。

由于对数曲线在像素值较低的区域斜率大,在像素值较高的区域斜率较小,所以图像经过对数变换后,较暗区域的对比度将有所提升。这种变换可用于增强图像的暗部细节,从而用来扩展被压缩的高值图像中的较暗像素。

对数变换实现了扩展低灰度值而压缩高灰度值的效果,被广泛地应用于频谱图像的显示中。一个典型的应用是傅立叶频谱,其动态范围可能宽达0~106直接显示频谱时,图像显示设备的动态范围往往不能满足要求,从而丢失大量的暗部细节;而在使用对数变换之后,图像的动态范围被合理地非线性压缩,从而可以清晰地显示。在下图中,未经变换的频谱经过对数变换后,增加了低灰度区域的对比度,从而增强暗部的细节。

下面的代码实现了图像灰度的对数变换。

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def log_plot(c):
x = np.arange(0, 256, 0.01)
y = c * np.log(1 + x)
plt.plot(x, y, 'r', linewidth=1)
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.title(u'对数变换函数')
plt.xlim(0, 255), plt.ylim(0, 255)
plt.show()
#对数变换
def log(c, img):
output = c * np.log(1.0 + img)
output = np.uint8(output + 0.5)
return output
#读取原始图像
img = cv2.imread('test.png')
#绘制对数变换曲线
log_plot(42)
#图像灰度对数变换
output = log(42, img)
#显示图像
cv2.imshow('Input', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

下图表示经过对数函数处理后的效果图,对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。

对应的对数函数曲线如图

三.图像灰度伽玛变换

伽玛变换又称为指数变换或幂次变换,是另一种常用的灰度非线性变换。图像灰度的伽玛变换一般表示如公式所示:

  • 当γ>1时,会拉伸图像中灰度级较高的区域,压缩灰度级较低的部分。
  • 当γ<1时,会拉伸图像中灰度级较低的区域,压缩灰度级较高的部分。
  • 当γ=1时,该灰度变换是线性的,此时通过线性方式改变原图像。

Python实现图像灰度的伽玛变换代码如下,主要调用幂函数实现。

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import cv2
#绘制曲线
def gamma_plot(c, v):
x = np.arange(0, 256, 0.01)
y = c*x**v
plt.plot(x, y, 'r', linewidth=1)
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.title(u'伽马变换函数')
plt.xlim([0, 255]), plt.ylim([0, 255])
plt.show()
#伽玛变换
def gamma(img, c, v):
lut = np.zeros(256, dtype=np.float32)
for i in range(256):
lut[i] = c * i ** v
output_img = cv2.LUT(img, lut) #像素灰度值的映射
output_img = np.uint8(output_img+0.5)
return output_img
#读取原始图像
img = cv2.imread('test.png')
#绘制伽玛变换曲线
gamma_plot(0.00000005, 4.0)
#图像灰度伽玛变换
output = gamma(img, 0.00000005, 4.0)
#显示图像
cv2.imshow('Imput', img)
cv2.imshow('Output', output)
cv2.waitKey(0)
cv2.destroyAllWindows()

下图表示经过伽玛变换处理后的效果图,伽马变换对于图像对比度偏低,并且整体亮度值偏高(或由于相机过曝)情况下的图像增强效果明显。

对应的幂律函数曲线如图所示。

点击关注,第一时间了解华为云新鲜技术~

跟我学Python图像处理丨何为图像的灰度非线性变换的更多相关文章

  1. 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

    摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...

  2. 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算

    摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...

  3. 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

    摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...

  4. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  5. Python图像处理丨认识图像锐化和边缘提取的4个算子

    摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...

  6. 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...

  7. 跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波

    摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波. 本文分享自华为云社区<[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波>,作者:eastmount . 一.高通滤波 傅 ...

  8. Python图像处理丨带你认识图像量化处理及局部马赛克特效

    摘要:本文主要讲述如何进行图像量化处理和采样处理及局部马赛克特效. 本文分享自华为云社区<[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效>,作者: eastmoun ...

  9. Python图像处理丨图像腐蚀与图像膨胀

    摘要:本篇文章主要讲解Python调用OpenCV实现图像腐蚀和图像膨胀的算法. 本文分享自华为云社区<[Python图像处理] 八.图像腐蚀与图像膨胀>,作者: eastmount . ...

随机推荐

  1. make 随笔

    # --with--cc-opt flag导致./configure时找不到对应库文件? checking for --with-ld-opt="-Wl,-z,relro -Wl,-z,no ...

  2. 合宙AIR105(二): 时钟设置和延迟函数

    目录 合宙AIR105(一): Keil MDK开发环境, DAP-Link 烧录和调试 合宙AIR105(二): 时钟设置和延迟函数 Air105 的时钟 高频振荡源 芯片支持使用内部振荡源, 或使 ...

  3. 编程技巧│提高 Javascript 代码效率的技巧

    目录 一.变量声明 二.三元运算符 三.解构赋值 四.解构交换 五.箭头函数 六.字符串模版 七.多值匹配 八.ES6对象简写 九.字符串转数字 十.次方相乘 十一.数组合并 十二.查找数组最大值最小 ...

  4. 快速保存Win10锁屏壁纸,收获美丽瞬间

    对于写程序而言,每天接触得最多的就是电脑了 所以保持一种开放乐观,豁达美丽的心情是十分有必要的 使用"Everything"工具,输入"LocalState\Assets ...

  5. ASP.NET MVC之读取服务器文件资源的两种方式

    初次认识asp.net mvc时,以为所有文件都需要走一遍路由,然后才能在客户端显示, 所以我首先介绍这一种方式 比如说:我们在服务器上有图片: ~/resource/image/5.jpg 我们就需 ...

  6. 全网求解,用Python处理一个基础题目

    昨天在群里看见一个Python的问题,趁着今天有那么一点点时间,就想把这个题目分享出来,让大家一起解决.毕竟三个臭皮匠,赛过诸葛亮.原始数据如下: 1 origin_lst = [0, 0, 1, 2 ...

  7. org/apache/poi/POIXMLTypeLoader或者java.lang.NoSuchFieldError: RETURN_NULL_AND_BLANK

    原因是之前我的poi和ooxml版本有点低, 解决方案 将两者版本提高,我是将两者的版本都提高到了3.15

  8. Elasticsearch学习系列七(Es分布式集群)

    核心概念 集群(Cluster) 一个Es集群由多个节点(Node)组成,每个集群都有一个共同的集群名称作为标识 节点(Node) 一个Es实例就是一个Node.Es的配置文件中可以通过node.ma ...

  9. Linux系列之查找命令

    前言 Linux 有四个常用的查找命令:locate.whereis.which 和 find.本文介绍它们的区别和简单用法. locate命令 这个命令将检查你的整个文件系统,并找到该关键词的每一次 ...

  10. Git Rebase操作

    概括 rebase翻译过来为"变基",可以理解为改变基础,它可以用于分支合并和修改提交记录. 合并分支的区别 我们知道merge操作也可以用于分支合并,但是其和rebase操作有着 ...