题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图)。  现在,C君希望你告诉他队伍整齐时能看到的学生人数。

输入输出格式

输入格式:

共一个数N

输出格式:

共一个数,即C君应看到的学生人数。

思路:

典型的欧拉筛

为了帮助萌新,我先从欧拉函数开讲

什么是欧拉函数?

定义:与一个数的约数有且只有1的数(互质)的个数(比如说2有1一个,6有1,5两个)

性质:积性函数(Phi(i)等于他的所有质因数的phi值的乘积)

为什么能这么做呢?

其实这道题求的是有多少种不同的斜率

为什么呢?

看图:

很显然,一个斜率上只能看到一个人,该斜率其他人都会被堵得死死的。。。

那么,每一个独立的斜率又如何表示呢?

我们用数对(x,y)表示斜率

我们知道,如果x,y不互质,那么他们可以同时除以他们的最大公约数(设为k),则该斜率可表示为(x/k,y/k)

很显然会有重复

所以为了避免重复,我们所求的是互质点对的个数

互质点对很显然就是欧拉函数

这里我用的是(nlogn)的算法——埃氏筛

从2开始,一个数i如果因数标记为1,则他是素数,他的欧拉函数值为i-1,同时,利用它来更新所有它的倍数的因数标记,如果因数标记大于1,则其不是素数,根据积性函数的性质,Phi[i]=其各因数的乘积,当其含有多次方因子时(比如8=2^3),那么Phi[i]的值为phi[2]*2*2;

不说了,代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
long long ll;
long long e[40010];
long long n,ans;
int main()
{
ans=2;
cin>>n;
if(n==1)
{
cout<<0;
return 0;
}
for(int i=1;i<=n;++i)
{
e[i]=i;
}
for(int i=2;i<=n;++i)
{
if(e[i]==i)
{
for(int j=i;j<=n;j+=i)
{
e[j]=e[j]/i*(i-1);
}
}
}
n--;
for(int i=2;i<=n;++i)
{
ans+=e[i]*2;
}
cout<<ans+1;
}

[SDOI2008]仪仗队(欧拉筛裸题)的更多相关文章

  1. 【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛

    欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; boo ...

  2. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  3. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  4. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  6. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  7. HDU3501——欧拉函数裸题

    给整数N(1 ≤ N ≤ 1000000000),求小于N的与N不互素的所有正整数的和. 思路:1.用欧拉函数求出小于N的与N互素的正整数的个数: 2.若 p 与 N 互素,则 N-p 必与 N 互素 ...

  8. POJ_2407 Relatives 【欧拉函数裸题】

    一.题目 Given n, a positive integer, how many positive integers less than n are relatively prime to n? ...

  9. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

随机推荐

  1. 冒泡排序——Java实现

    一.排序思想 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的元素重复以上的步骤, ...

  2. Thrift笔记(一)--Hello Demo

    Thrift是一个RPC框架 1. 用IDL定义好实体和服务框架,如实体字段名,类型等.服务名,服务参数,返回值等 2. 通过编译器或者说代码生成器生成RPC框架代码 IDL语法,代码生成器的安装使用 ...

  3. TopcoderSRM679 Div1 250 FiringEmployees(树形dp)

    题意 [题目链接]这怎么发链接啊..... 有一个 \(n\) 个点的树,每个点有点权(点权可能为负) ,求包含点\(1\)的最 大权连通子图(的权值和) . \(n \leqslant 2500\) ...

  4. wxpython,wx.EVT_ENTER_WINDOW

    这个例子是鼠标移入,button的label显示“Over Me”,但是我运行没有显示求怎么回事

  5. setExecuteExistingDelayedTasksAfterShutdownPolicy方法与setContinueExistingPeriodicTasksAfterShutdownPolicy方法的比较

    一.setExecuteExistingDelayedTasksAfterShutdownPolicy方法 这个方法大多是与schedule方法和shutdown方法搭配使用的. public voi ...

  6. java实现多文件上传01

    1.html代码 <html> <head> <link rel="stylesheet" type="text/css" hre ...

  7. js中top、clientTop、scrollTop、offsetTop的区别 文字详细说明版

    网页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;网页可见区域宽: document.body.offset ...

  8. c++中的const用法(很详细)——转

    http://www.cnblogs.com/ymy124/archive/2012/04/16/2451433.html const给人的第一印象就是定义常量. (1)const用于定义常量. 例如 ...

  9. 怎么在overflow-y:sroll的情况下 隐藏滚动条

    当我们的内容超出了我们的div,往往会出现滚动条,影响美观. 尤其是当我们在做一些导航菜单的时候.滚动条一出现就破坏了UI效果.  我们不希望出现滚动条,也不希望超出去的内容被放逐,就要保留鼠标滚动的 ...

  10. Asp.net网站优化【转】

    阅读目录 开始 配置OutputCache 启用内容过期 解决资源文件升级问题 启用压缩 删除无用的HttpModule 其它优化选项 本文将介绍一些方法用于优化ASP.NET网站性能,这些方法都是不 ...