统计了14天的气象数据D(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。

outlook temperature humidity windy play
sunny hot high FALSE no
sunny hot high TRUE no
overcast hot high FALSE yes
rainy mild high FALSE yes
rainy cool normal FALSE yes
rainy cool normal TRUE no
overcast cool normal TRUE yes
sunny mild high FALSE no
sunny cool normal FALSE yes
rainy mild normal FALSE yes
sunny mild normal TRUE yes
overcast mild high TRUE yes
overcast hot normal FALSE yes
rainy mild high TRUE no

预备知识:信息熵

熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:

通常以2为底数,所以信息熵的单位是bit。

C4.5算法

构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。

在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:

Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940

属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。

对每项指标分别统计:在不同的取值下打球和不打球的次数。

outlook temperature humidity windy play
  yes no   yes no   yes no   yes no yes no
sunny 2 3 hot 2 2 high 3 4 FALSE 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 TRUR 3 3    
rainy 3 2 cool 3 1                

下面对属性集中每个属性分别计算信息熵,如下所示:

Info(outlook) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694

Info(temperature) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911

Info(huminity) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789

Info(windy) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892

根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:

gain(outlook) = Info(D) - Info(outlook) = 0.940 - 0.694 = 0.246

gain(temperature) = Info(D) - Info(temperature) = 0.940 - 0.911 = 0.029

gain(huminity) = Info(D) - Info(huminity) = 0.940 - 0.789 = 0.151

gain(windy) = Info(D) - Info(windy) = 0.940 - 0.892 = 0.048

接下来,我们计算分裂信息度量H(V):

  • outlook属性

属性outlook有3个取值,其中sunny有5个样本、rainy有5个样本、overcast有4个样本,则

H(outlook) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345

  • temperature属性

属性temperature有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则

H(temperature) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228

  • huminity属性

属性huminity有2个取值,其中Normal有7个样本、High有7个样本,则

H(huminity) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0

  • windy属性

属性windy有2个取值,其中True有6个样本、False有8个样本,则

H(windy) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516

根据上面计算结果,我们可以计算信息增益率,如下所示:

IGR(outlook) = Info(outlook) / H(outlook) = 0.246/1.577406282852345 = 0.15595221261270145

IGR(temperature) = Info(temperature) / H(temperature) = 0.029 / 1.5566567074628228 = 0.018629669509642094

IGR(huminity) = Info(huminity) / H(huminity) = 0.151/1.0 = 0.151

IGR(windy) = Info(windy) / H(windy) = 0.048/0.9852281360342516 = 0.048719680492692784

所以我们可以选出第一个根节点是outlook

最后得到的决策树为:

参考文献:

[1]http://blog.csdn.net/xuxurui007/article/details/18045943

[2]http://www.cnblogs.com/zhangchaoyang/articles/2842490.html

数据挖掘算法(一)C4.5的更多相关文章

  1. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  2. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  3. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

  4. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  5. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  6. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  7. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  8. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  9. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  10. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

随机推荐

  1. link和@import的区别、及各自的应用

    面试的过程中遇到的问题,当时自己回答的感觉自己心里还是很满意的,但是回来百度查看后才知道自己回答的有多么的糟糕: 下面我这这个知识点做一些总结的书面说明,为了少走点弯路,多涨点见识吧. 首先我们要了解 ...

  2. 使用django rest framework

    django 刚接触,想做一些restful api , google了一下,发现有现成的框架.Django REST framework. 对使用做下记录: 安装 从http://django-re ...

  3. phpcms v9调用自定义字段的方法步骤

    代码如下:{loop $shigongtu $r}<img src="{$r[url]} " title="测试"/>{/loop} 2 首页,分页 ...

  4. php变量 写时改变 写时复制

    写时复制 $var = 1; $var2 = $var; #此时$var2 与 $var 指向同一个zval refcount = 2: $var = 2; # 此时$val 改变 所以 $var 与 ...

  5. 浅析call和apply的不同

    call, apply都属于Function.prototype的一个方法,它是JavaScript引擎内在实现的,因为属于Function.prototype,所以每个Function对象实例,也就 ...

  6. cf 710 E Generate a String

    题意: 开始你有数字$0$,你可以用代价$x$将该数字加$1$或减$1$(当$x > 0$时),或用代价$y$将该数字变为$2x$,那么问得到数字$n$所需的最少代价是多少. 数据范围$1 \l ...

  7. Android 网络开发之WIFI

    WIFI就是一种无线联网技术,常见的是使用无线路由器.那么在这个无线路由器的信号覆盖的范围内都可以采用WIFI连接的方式进行联网.如果无线路由器连接了一个ADSL线路或其他的联网线路,则又被称为&qu ...

  8. sqlalchemy中文乱码问题解决方案

    本文参考http://firefish.blog.51cto.com/298258/112794/的解决方案 问题: 本文在Ubuntu上利用scrapy抓取数据写入mysql数据库时,用到sqlal ...

  9. 今天谈谈流,什么是IO流?

    无标题 (5) :first-child { margin-top: 0; } blockquote > :last-child { margin-bottom: 0; } img { bord ...

  10. Jquery页面初始化的4种方式

    <script src="Scripts/jquery-1.8.2.min.js"></script> <script type="text ...