数据挖掘算法(一)C4.5
统计了14天的气象数据D(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。
| outlook | temperature | humidity | windy | play |
| sunny | hot | high | FALSE | no |
| sunny | hot | high | TRUE | no |
| overcast | hot | high | FALSE | yes |
| rainy | mild | high | FALSE | yes |
| rainy | cool | normal | FALSE | yes |
| rainy | cool | normal | TRUE | no |
| overcast | cool | normal | TRUE | yes |
| sunny | mild | high | FALSE | no |
| sunny | cool | normal | FALSE | yes |
| rainy | mild | normal | FALSE | yes |
| sunny | mild | normal | TRUE | yes |
| overcast | mild | high | TRUE | yes |
| overcast | hot | normal | FALSE | yes |
| rainy | mild | high | TRUE | no |
预备知识:信息熵
熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:

通常以2为底数,所以信息熵的单位是bit。
C4.5算法
构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。
在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:
Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940
属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。
对每项指标分别统计:在不同的取值下打球和不打球的次数。
| outlook | temperature | humidity | windy | play | |||||||||
| yes | no | yes | no | yes | no | yes | no | yes | no | ||||
| sunny | 2 | 3 | hot | 2 | 2 | high | 3 | 4 | FALSE | 6 | 2 | 9 | 5 |
| overcast | 4 | 0 | mild | 4 | 2 | normal | 6 | 1 | TRUR | 3 | 3 | ||
| rainy | 3 | 2 | cool | 3 | 1 | ||||||||
下面对属性集中每个属性分别计算信息熵,如下所示:
Info(outlook) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
Info(temperature) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
Info(huminity) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
Info(windy) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892
根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:
gain(outlook) = Info(D) - Info(outlook) = 0.940 - 0.694 = 0.246
gain(temperature) = Info(D) - Info(temperature) = 0.940 - 0.911 = 0.029
gain(huminity) = Info(D) - Info(huminity) = 0.940 - 0.789 = 0.151
gain(windy) = Info(D) - Info(windy) = 0.940 - 0.892 = 0.048
接下来,我们计算分裂信息度量H(V):
- outlook属性
属性outlook有3个取值,其中sunny有5个样本、rainy有5个样本、overcast有4个样本,则
H(outlook) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345
- temperature属性
属性temperature有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则
H(temperature) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228
- huminity属性
属性huminity有2个取值,其中Normal有7个样本、High有7个样本,则
H(huminity) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0
- windy属性
属性windy有2个取值,其中True有6个样本、False有8个样本,则
H(windy) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516
根据上面计算结果,我们可以计算信息增益率,如下所示:
IGR(outlook) = Info(outlook) / H(outlook) = 0.246/1.577406282852345 = 0.15595221261270145
IGR(temperature) = Info(temperature) / H(temperature) = 0.029 / 1.5566567074628228 = 0.018629669509642094
IGR(huminity) = Info(huminity) / H(huminity) = 0.151/1.0 = 0.151
IGR(windy) = Info(windy) / H(windy) = 0.048/0.9852281360342516 = 0.048719680492692784
所以我们可以选出第一个根节点是outlook

最后得到的决策树为:

参考文献:
[1]http://blog.csdn.net/xuxurui007/article/details/18045943
[2]http://www.cnblogs.com/zhangchaoyang/articles/2842490.html
数据挖掘算法(一)C4.5的更多相关文章
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】EM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...
- 【十大经典数据挖掘算法】AdaBoost
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 【十大经典数据挖掘算法】Naïve Bayes
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...
- 【十大经典数据挖掘算法】k-means
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【十大经典数据挖掘算法】Apriori
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...
- 【十大经典数据挖掘算法】kNN
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...
- 【十大经典数据挖掘算法】CART
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...
随机推荐
- .net常见的面试题
1,asp.net中的页生命周期 答:msdn官网已给出标准答案,这里简述一下:页要经历下表概述的8个阶段.除了页生命周期阶段以外,在请求前后还存在应用程序阶段,但是这些阶段并不特定于页. 而这8个阶 ...
- 在eclipse上开发nodejs
首先到官网下载nodejs.地址:https://nodejs.org/en,可根据自己的操作系统选择下载. 安装好后.进入命令行输入node ,然后输入console.log("hello ...
- DataGridView中实现checkbox全选的自定义控件
在DataGridView中实现Checkbox的全选的方法就是在列头画一个checkbox, 并给其一个事件. 这个之前很多blog都有写, 这里就不多废话了, codeproject上面有示例代 ...
- 关于dvajs里effects的call和put
call会把return 传回来 put把参数穿回来了 在effects里好像只有yield能触发put ,call暂时没定
- redhat6.3下源码编译方式安装最新版git
在linux下安装git,通过yum方式安装的不是最新版本. 要替换最新版需要以下操作. 1.安装依赖包 # yum install curl-devel expat-devel gettext-de ...
- 笔记--mysql rpm 安装
1.rpm包下载 http://taokey.blog.51cto.com/4633273/1630561
- 5. 网络配置与FTP服务笔记
IP地址: Ipv4 2*32 Ipv6 tcp 网络通讯协议 udp 用户数据报协议 常见网络端口: 20 21 ftp服务 文件共享 22 ...
- 20145227&20145201 《信息安全系统设计基础》实验五
北京电子科技学院(BESTI) 实 验 报 告 课程:信息安全系统设计基础 班级:1452 姓名:(按贡献大小排名)鄢曼君 李子璇 学号:(按贡献大小排名)20145227 20145201 成绩: ...
- [OSG][osgEarth]osgEarth例子程序简介
1.osgearth_graticule:生成经纬线. 2.osgearth_annotation:各类标注(点.线.面.模型.文本等). 3.osgearth_city:加载一个城市三维模型,可以浏 ...
- 利用JavaScript来实现省份—市县的二级联动
所谓省-市二级联动是指当选择省份下拉选择框时,市县的下拉框会根据选择的省市而有相应的市县加载出来,如下图所示选择"上海市",城市的下拉选择框只会出现上海的市县: 这种二级联动非常常 ...