统计了14天的气象数据D(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。

outlook temperature humidity windy play
sunny hot high FALSE no
sunny hot high TRUE no
overcast hot high FALSE yes
rainy mild high FALSE yes
rainy cool normal FALSE yes
rainy cool normal TRUE no
overcast cool normal TRUE yes
sunny mild high FALSE no
sunny cool normal FALSE yes
rainy mild normal FALSE yes
sunny mild normal TRUE yes
overcast mild high TRUE yes
overcast hot normal FALSE yes
rainy mild high TRUE no

预备知识:信息熵

熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:

通常以2为底数,所以信息熵的单位是bit。

C4.5算法

构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。

在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:

Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940

属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。

对每项指标分别统计:在不同的取值下打球和不打球的次数。

outlook temperature humidity windy play
  yes no   yes no   yes no   yes no yes no
sunny 2 3 hot 2 2 high 3 4 FALSE 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 TRUR 3 3    
rainy 3 2 cool 3 1                

下面对属性集中每个属性分别计算信息熵,如下所示:

Info(outlook) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694

Info(temperature) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911

Info(huminity) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789

Info(windy) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892

根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:

gain(outlook) = Info(D) - Info(outlook) = 0.940 - 0.694 = 0.246

gain(temperature) = Info(D) - Info(temperature) = 0.940 - 0.911 = 0.029

gain(huminity) = Info(D) - Info(huminity) = 0.940 - 0.789 = 0.151

gain(windy) = Info(D) - Info(windy) = 0.940 - 0.892 = 0.048

接下来,我们计算分裂信息度量H(V):

  • outlook属性

属性outlook有3个取值,其中sunny有5个样本、rainy有5个样本、overcast有4个样本,则

H(outlook) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345

  • temperature属性

属性temperature有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则

H(temperature) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228

  • huminity属性

属性huminity有2个取值,其中Normal有7个样本、High有7个样本,则

H(huminity) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0

  • windy属性

属性windy有2个取值,其中True有6个样本、False有8个样本,则

H(windy) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516

根据上面计算结果,我们可以计算信息增益率,如下所示:

IGR(outlook) = Info(outlook) / H(outlook) = 0.246/1.577406282852345 = 0.15595221261270145

IGR(temperature) = Info(temperature) / H(temperature) = 0.029 / 1.5566567074628228 = 0.018629669509642094

IGR(huminity) = Info(huminity) / H(huminity) = 0.151/1.0 = 0.151

IGR(windy) = Info(windy) / H(windy) = 0.048/0.9852281360342516 = 0.048719680492692784

所以我们可以选出第一个根节点是outlook

最后得到的决策树为:

参考文献:

[1]http://blog.csdn.net/xuxurui007/article/details/18045943

[2]http://www.cnblogs.com/zhangchaoyang/articles/2842490.html

数据挖掘算法(一)C4.5的更多相关文章

  1. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  2. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  3. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

  4. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  5. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  6. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  7. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  8. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  9. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  10. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

随机推荐

  1. .net常见的面试题

    1,asp.net中的页生命周期 答:msdn官网已给出标准答案,这里简述一下:页要经历下表概述的8个阶段.除了页生命周期阶段以外,在请求前后还存在应用程序阶段,但是这些阶段并不特定于页. 而这8个阶 ...

  2. 在eclipse上开发nodejs

    首先到官网下载nodejs.地址:https://nodejs.org/en,可根据自己的操作系统选择下载. 安装好后.进入命令行输入node ,然后输入console.log("hello ...

  3. DataGridView中实现checkbox全选的自定义控件

    在DataGridView中实现Checkbox的全选的方法就是在列头画一个checkbox, 并给其一个事件. 这个之前很多blog都有写, 这里就不多废话了,  codeproject上面有示例代 ...

  4. 关于dvajs里effects的call和put

    call会把return 传回来 put把参数穿回来了 在effects里好像只有yield能触发put ,call暂时没定

  5. redhat6.3下源码编译方式安装最新版git

    在linux下安装git,通过yum方式安装的不是最新版本. 要替换最新版需要以下操作. 1.安装依赖包 # yum install curl-devel expat-devel gettext-de ...

  6. 笔记--mysql rpm 安装

    1.rpm包下载 http://taokey.blog.51cto.com/4633273/1630561

  7. 5. 网络配置与FTP服务笔记

    IP地址: Ipv4        2*32       Ipv6 tcp      网络通讯协议 udp    用户数据报协议 常见网络端口: 20  21      ftp服务 文件共享 22   ...

  8. 20145227&20145201 《信息安全系统设计基础》实验五

    北京电子科技学院(BESTI) 实 验 报 告 课程:信息安全系统设计基础 班级:1452 姓名:(按贡献大小排名)鄢曼君 李子璇 学号:(按贡献大小排名)20145227 20145201 成绩: ...

  9. [OSG][osgEarth]osgEarth例子程序简介

    1.osgearth_graticule:生成经纬线. 2.osgearth_annotation:各类标注(点.线.面.模型.文本等). 3.osgearth_city:加载一个城市三维模型,可以浏 ...

  10. 利用JavaScript来实现省份—市县的二级联动

    所谓省-市二级联动是指当选择省份下拉选择框时,市县的下拉框会根据选择的省市而有相应的市县加载出来,如下图所示选择"上海市",城市的下拉选择框只会出现上海的市县: 这种二级联动非常常 ...