数据挖掘算法(一)C4.5
统计了14天的气象数据D(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。
| outlook | temperature | humidity | windy | play |
| sunny | hot | high | FALSE | no |
| sunny | hot | high | TRUE | no |
| overcast | hot | high | FALSE | yes |
| rainy | mild | high | FALSE | yes |
| rainy | cool | normal | FALSE | yes |
| rainy | cool | normal | TRUE | no |
| overcast | cool | normal | TRUE | yes |
| sunny | mild | high | FALSE | no |
| sunny | cool | normal | FALSE | yes |
| rainy | mild | normal | FALSE | yes |
| sunny | mild | normal | TRUE | yes |
| overcast | mild | high | TRUE | yes |
| overcast | hot | normal | FALSE | yes |
| rainy | mild | high | TRUE | no |
预备知识:信息熵
熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:

通常以2为底数,所以信息熵的单位是bit。
C4.5算法
构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。
在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:
Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940
属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。
对每项指标分别统计:在不同的取值下打球和不打球的次数。
| outlook | temperature | humidity | windy | play | |||||||||
| yes | no | yes | no | yes | no | yes | no | yes | no | ||||
| sunny | 2 | 3 | hot | 2 | 2 | high | 3 | 4 | FALSE | 6 | 2 | 9 | 5 |
| overcast | 4 | 0 | mild | 4 | 2 | normal | 6 | 1 | TRUR | 3 | 3 | ||
| rainy | 3 | 2 | cool | 3 | 1 | ||||||||
下面对属性集中每个属性分别计算信息熵,如下所示:
Info(outlook) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
Info(temperature) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
Info(huminity) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
Info(windy) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892
根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:
gain(outlook) = Info(D) - Info(outlook) = 0.940 - 0.694 = 0.246
gain(temperature) = Info(D) - Info(temperature) = 0.940 - 0.911 = 0.029
gain(huminity) = Info(D) - Info(huminity) = 0.940 - 0.789 = 0.151
gain(windy) = Info(D) - Info(windy) = 0.940 - 0.892 = 0.048
接下来,我们计算分裂信息度量H(V):
- outlook属性
属性outlook有3个取值,其中sunny有5个样本、rainy有5个样本、overcast有4个样本,则
H(outlook) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345
- temperature属性
属性temperature有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则
H(temperature) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228
- huminity属性
属性huminity有2个取值,其中Normal有7个样本、High有7个样本,则
H(huminity) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0
- windy属性
属性windy有2个取值,其中True有6个样本、False有8个样本,则
H(windy) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516
根据上面计算结果,我们可以计算信息增益率,如下所示:
IGR(outlook) = Info(outlook) / H(outlook) = 0.246/1.577406282852345 = 0.15595221261270145
IGR(temperature) = Info(temperature) / H(temperature) = 0.029 / 1.5566567074628228 = 0.018629669509642094
IGR(huminity) = Info(huminity) / H(huminity) = 0.151/1.0 = 0.151
IGR(windy) = Info(windy) / H(windy) = 0.048/0.9852281360342516 = 0.048719680492692784
所以我们可以选出第一个根节点是outlook

最后得到的决策树为:

参考文献:
[1]http://blog.csdn.net/xuxurui007/article/details/18045943
[2]http://www.cnblogs.com/zhangchaoyang/articles/2842490.html
数据挖掘算法(一)C4.5的更多相关文章
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】EM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...
- 【十大经典数据挖掘算法】AdaBoost
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 【十大经典数据挖掘算法】Naïve Bayes
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...
- 【十大经典数据挖掘算法】k-means
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【十大经典数据挖掘算法】Apriori
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...
- 【十大经典数据挖掘算法】kNN
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...
- 【十大经典数据挖掘算法】CART
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...
随机推荐
- html5,格式的验证
<form action="" method="get"> <input type="text" name=&quo ...
- YbSoftwareFactory 代码生成插件【十六】:Web 下灵活、强大的审批流程实现(含流程控制组件、流程设计器和表单设计器)
程序=数据结构+算法,而企业级的软件=数据+流程,流程往往千差万别,客户自身有时都搞不清楚,随时变化的情况更是家常便饭,抛开功能等不谈,需求变化很大程度上就是流程的变化,流程的变化会给开发工作造成很大 ...
- get([index])
get([index]) 概述 取得其中一个匹配的元素. num表示取得第几个匹配的元素.从0开始,返回的是DOM对象,类似的有eq(index),不过eq(index)返回的是jQuery对象. 这 ...
- 查找树ADT
通过二叉查找树实现排序的例程 /** * 无论排序的对象是什么,都要实现Comparable接口 * * @param <T> */ public class BinaryNode< ...
- Hibernate 基础配置及常用功能(二)
本章主要是描述几种经典映射关系,顺带比较Hibernate4.x和Hibernate5.x之间的区别. 一.建立测试工程目录 有关实体类之间的相互映射关系,Hibernate官方文档其实描述的非常详细 ...
- git 常用命令及解析 由浅入深
笔者用的是windows系统,不过并没有什么影响. Git 分布式版本控制系统. 为了让初学git的人明白git是干什么的,有什么意义 笔者觉得先来介绍git作为版本控制器是怎么运作的会让大家对后边 ...
- JSTL标签库之核心标签
一.JSTL标签库介绍 JSTL标签库的使用是为弥补html标签的不足,规范自定义标签的使用而诞生的.使用JSLT标签的目的就是不希望在jsp页面中出现java逻辑代码 二.JSTL标签库的分类 核心 ...
- Android下添加新的自定义键值和按键处理流程
Android下添加新的自定义键值和按键处理流程 说出来不怕大家笑话,我写这篇博客的原因在于前几天去一个小公司面试Android系统工程师,然后在面试的时候对方的技术总监问了我 ...
- weboffice控件使用不能嵌入网页
var s = ""s += "<object id=WebOffice1 height=586 width='100%' style='LEFT: 0px; TO ...
- html(二)
1无序列表 ul是没有前后顺序的信息列表. <ul> <li></li> <li></li> ...... </ul> ul在网 ...