1. 删除列层次化索引

用pandas利用df.groupby.agg() 做聚合运算时遇到一个问题:产生了列方向上的两级索引,且需要删除一级索引。具体代码如下:

# 每个uesr每天消费金额统计:和、均值、最大值、最小值、消费次数、消费种类、

action_info = student_action.groupby(['outid','date']).agg({'opfare':['sum','mean','max','min'],
'acccode':['count','unique'],}).reset_index()

action_info 表结果如下:

删除列的层次化索引操作如下:

# 列的层次化索引的删除
levels = action_info.columns.levels
labels = action_info.columns.labels
print(levels,labels)
action_info.columns = levels[1][labels[1]]

2.  agg()与apply()的区别

以 student_action表为例:

apply()方法:

agg()方法:

可以看到,apply()可以展示所有维度的数据,而agg()仅可以展示一个维度的数据。

事实上,如果值是一维数组,在利用完特定的函数之后,能做到简化的话,agg就能调用,反之,如果比如自定义的函数是排序,或者是一些些更复杂统计的函数,当然是agg所不能解决的,这时候用apply就可以解决。因为他更一般化,不存在什么简化,什么一维数组,什么标量值。且apply会将当前分组后的数据一起传入,可以返回多维数据。

例子:根据 student_action表,统计每个学生每天最高使用次数的终端、最低使用次数的终端以及最高使用次数终端的使用次数、最低使用次数终端的使用次数。

针对这个例子,有两种方法:

方法一:low到爆 永不使用!! 

1. 构造每个用户每天的终端列表,需要one-hot termid

2. 构造groupby.agg()所使用的方法

2.1 列表模糊查找,找到包含'termid_'的字段名

termid_features = [x for i,x in enumerate(student_termid_onehot.columns.tolist()) if x.find('termid_')!=-1]

2.2 构造指定长度,指定元素的列表

sum_methods= ['sum'for x in range(0, len(termid_features))]

2.3  agg_methods=dict(zip(termid_features,sum_methods))

3. 每个学生每天的终端使用次数明细表

find_termid_df = student_termid_onehot.groupby(['outid','date']).agg(agg_methods).reset_index()

4. 找到student_termid_onehot中包含 'termid_'字段元素的最大值对应的字段名

4.1 构造列表保存

4.2 遍历每行数据,构造dict,并过滤value =0.0 的 k-v

4.3 找到每个dict的value值最大的key

max(filtered_statics_dict, key=filtered_statics_dict.get)

方法二:优雅直观

def transmethod(df):
"""
每个用户每天消费记录最大值、最高使用次数的终端、最低使用次数的终端
以及最高使用次数终端的使用次数、最低使用次数终端的使用次数。 df type:
outid opcount date time oddfare opfare acccode \
3538 152211511101 5 2015-09-08 07:24:25 11290 200 210
6108 152211511101 6 2015-09-08 12:09:01 10440 850 210 termid
3538 13
6108 39 """
# 每日最大消费额
maxop = df['opfare'].max()
statics_dict={}
for i in set(df['acccode'].tolist()):
statics_dict[i] = df['acccode'].tolist().count(i)
highest_termid = max(statics_dict, key=statics_dict.get)
lowhest_termid = min(statics_dict, key=statics_dict.get)
highest_termid_freq = statics_dict[highest_termid]
lowhest_termid_freq = statics_dict[lowhest_termid] return maxop,highest_termid,highest_termid_freq,lowhest_termid,lowhest_termid_freq

groupby.apply() 组合使用:

pd.DataFrame(student_action.groupby(['outid','date']).apply(lambda x:transmethod(x)))

可以发现,apply()方法要比agg()方法灵活的多的多!

3. 总结

  • 列层次索引的删除
  • 列表的模糊查找方式
  • 查找dict的value值最大的key 的方式
  • 当做简单的聚合操作(max,min,unique等),可以使用agg(),在做复杂的聚合操作时,一定使用apply()

pandas:由列层次化索引延伸的一些思考的更多相关文章

  1. Pandas基本功能之层次化索引及层次化汇总

    层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b', ...

  2. pandas(五)处理缺失数据和层次化索引

    pandas用浮点值Nan表示浮点和非浮点数组中的缺失数据.它只是一个便于被检测的标记而已. >>> string_data = Series(['aardvark','artich ...

  3. pandas中层次化索引与切片

    Pandas层次化索引 1. 创建多层索引 隐式索引: 常见的方式是给dataframe构造函数的index参数传递两个或是多个数组 Series也可以创建多层索引 Series多层索引 B =Ser ...

  4. (三)pandas 层次化索引

    pandas层次化索引 1. 创建多层行索引 1) 隐式构造 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组 Series也可以创建多层索引 import numpy ...

  5. 利用Python进行数据分析(11) pandas基础: 层次化索引

      层次化索引 层次化索引指你能在一个数组上拥有多个索引,例如: 有点像Excel里的合并单元格对么? 根据索引选择数据子集   以外层索引的方式选择数据子集: 以内层索引的方式选择数据: 多重索引S ...

  6. pandas学习(创建多层索引、数据重塑与轴向旋转)

    pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或 ...

  7. 利用Python进行数据分析_Pandas_层次化索引

    申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 层次化索引主要解决低纬度形式处理高纬度数据的问题 import pandas ...

  8. SQL Server 2014聚集列存储索引

    转发请注明引用和原文博客(http://www.cnblogs.com/wenBlog) 简介 之前已经写过两篇介绍列存储索引的文章,但是只有非聚集列存储索引,今天再来简单介绍一下聚集的列存储索引,也 ...

  9. SQL Server 列存储索引强化

    SQL Server 列存储索引强化 SQL Server 列存储索引强化 1. 概述 2.背景 2.1 索引存储 2.2 缓存和I/O 2.3 Batch处理方式 3 聚集索引 3.1 提高索引创建 ...

随机推荐

  1. [微信] 客服接口调用的时候返回 40003 Invalid OpenID

    首先确认收件人在24小时内主动向公众号发过消息.该消息的 FromUserId 即是客服消息的 touser 参数的 OpenId 2017-05-19 更新:可以使用UTF-8了 string ur ...

  2. vs2017 调试时出现 cannot connect to runtime process错误

    用Visual Studio 2017 .net core进行开发时 ,调试运行项目时出现如下错误 解决方案,调试>选项,取消勾选,关闭对JavaScript的调试

  3. Python学习---爬虫学习[requests模块]180411

    模块安装 安装requests模块 pip3 install requests 安装beautifulsoup4模块 [更多参考]https://blog.csdn.net/sunhuaqiang1/ ...

  4. 安装启动apache2.4后报Invalid command 'order', perhaps misspelled or defined by a module not included

    httpd.conf中修改 重启Apache 报错. 在网上搜索了一下,大多是说mod_authz_host.so模块没有加载,但检查后发现httpd.conf中: 该模块并未被注释掉,那原因究竟出在 ...

  5. buff/cache 内容释放

    oscache远程服务器特别卡,top命令查看获得 buff/cache 占据内存特别大,使用以下命令清理缓存: swap清理: swapoff -a && swapon -a 注意: ...

  6. EF CodeFirst示例

    新建Web空项目,选择MVC相关基础组件 安装EntityFramework 添加模型和上下文对象 添加包含读写的控制器 点击添加报错 这时需要重新生成项目,然后再试尝试添加控制器,OK 为调试方便, ...

  7. 只要下面看到func() 带括号的,就会弹上去找对应的函数,然后执行相应的函数块

    def func1(): print("呵呵")def func2(): print("呵呵")def func3(): print("呵呵" ...

  8. linux下统计目录下所有子目录的大小

    du -sh * --exclude=tar |awk '{v=substr($1,length($1),1)}v=="G"{$0="1G "$0}v==&qu ...

  9. JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释 (生动形象)

    [转自]:https://blog.csdn.net/sd4015700/article/details/50109939 jvm区域总体分两类,heap区和非heap区.heap区又分:Eden S ...

  10. UVa 1252 - Twenty Questions(状压DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...